GEO0007 - Midpoint Theorem The Database contents GEO0005 - Pappus'  Hexagon Theorem GEO0006 -- Menelaus' Theorem

GEO0006 -- Menelaus' Theorem

The Theorem Statement[CGZ96]

Theorem. [Menelaus' Theorem] A transversal meets the three sides AB, BC, and CA of a triangle ABC in F, D, and E respectively. Then (AF)/(FB) = - (DC)/(BD) × (EA)/(CE). The non-degenerate condition is that A, B, and C are not on line EF.

The Image - GCLC 5.0

Prover's Code

dim 100 100
area 5 5 90 90 

point A 30 20
point B 70 20
point C 40 70

point X 15 55
point Y 75 10

line a B C
line b A C
line c A B

line p X Y 

intersec D a p
intersec E b p
intersec F c p

drawsegment A B
drawsegment A C
drawsegment B C

drawline p 

cmark_b A
cmark_t B
cmark_t C

cmark_t D
cmark_lt E
cmark_rt F

prove { equal { signed_area3 D E F } { 0 } }

Proved -- Proof, made with GCLC, v1.0

proofGEO0006.pdf
Pedro Quaresma and Predrag Janicic

 GEO0007 - Midpoint Theorem The Database contents GEO0005 - Pappus'  Hexagon Theorem GEO0006 -- Menelaus' Theorem