GEO0006 - Menelaus' Theorem The Database contents GEO0004 - Thales' Theorem GEO0005 -- Pappus' Hexagon Theorem

GEO0005 -- Pappus' Hexagon Theorem

The Theorem Statement [ZCG95]

Theorem. [Pappus's Hexagon Theorem] If A, B, and C are three points on one line, A1, B1, and C1 are three points on another line, and AB1 meets BA1 at P, AC1 meets CA1 at Q, and BC1 meets CD1 at S, then the three points P, Q, and S are collinear.

The Image - GCLC 5.0

Prover's Code

point A 40 10
point B 90 10 
%point C 120 10
online C A B

drawline A C
 
cmark_b A
cmark_b B
cmark_b C

point A_1 25 40
point B_1 45 45
%point C_1 65 50
online C_1 A_1 B_1


line A_1B_1 A_1 B_1 

drawline A_1 C_1
cmark_t A_1
cmark_t B_1
cmark_t C_1

line AB_1 A B_1
line AC_1 A C_1
line BA_1 B A_1
line BC_1 B C_1
line CA_1 C A_1
line CB_1 C B_1

drawsegment A B_1
drawsegment A C_1
drawsegment B A_1
drawsegment B C_1
drawsegment C A_1
drawsegment C B_1


intersec P AB_1 BA_1
intersec Q AC_1 CA_1
intersec S BC_1 CB_1
cmark_l P
cmark_t Q
cmark_t S

color 255 0 0
drawline P S

prove { equal { signed_area3 P Q S } 0 }
Proved -- Proof, made with GCLC, v1.0

proofGEO0005.pdf
Pedro Quaresma and Predrag Janicic

 GEO0006 - Menelaus' Theorem The Database contents GEO0004 - Thales' Theorem GEO0005 -- Pappus' Hexagon Theorem