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1. Introduction 
 
The two types of neural networks most used for supervised learning problems are multilayer perceptrons 
(MLPs) and radial basis function (RBF) networks. The main difference between them is that RBFs are 
linear in the parameters and MLPs are not. The only way to have MLPs linear in the parameters is to 
impose that the weights of the connections between input and hidden units are pre-defined and fixed 
during all the process of training (in a three layer network). Also, the output units have to be a linear 
combination of the hidden unit outputs. When we study a novel type of learning models, the support 
vector machines, we observe that after the learning process these models have a structure similarly to 
neural networks. They use a kernel function, ( , )K X Y , that represents the inner product between ( )Xφ  
and ( )Yφ  where ( )φ ⋅  is a transformation of the training data to a higher dimension space. ( , )K X Y  allow 
us to calculate the inner products between ( )Xφ  and ( )Yφ  without having to know the explicitly form of 
the transformation function. The most used kernel functions are: 
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( , ) tanh( )K X Y k X Y δ= ⋅ ⋅ −  (1.2) 

( )( , ) pK X Y X Y= ⋅  (1.3) 
 
These functions satisfy the Mercer condition [Vapnik 95] that guarantees to represent an inner product for 
the transformation of the variables into a higher dimension space. In the case of (1.2) this is true only for 
some values of k  and δ . A relevant difference between SVMs and neural networks is that the structure 
of a SVM doesn’t have to be pre-defined but is determined during raining.  
 
If we use the kernel (1.1) the SVM has a structure identical to a radial basis function. If the kernel used is 
(1.2) we have a structure similar to a multilayer perceptron where the weights form the connections 
between input and hidden units form the inner product between input training vectors. The observation of 
this last structure inspired us to think in a multilayer perceptron where the weights from the connections 
between input and hidden units are input training vectors. The only parameters to be estimated will be the 
weights from the connections between hidden and output units. In this way we have a multilayer 
perceptron that is linear in the parameters. 
 

2. Inner product networks 
 
An initialization method for the weights of a multilayer perceptron was proposed by [Denoeux 93] that 
consists in the use of the input training vectors after one type of normalization. This initialization 
procedure was motivated by the fact that if the training vectors were normalized their inner product 
reflects the distance between them. Using the training vectors (after normalization) for the weights of the 
connections between input and hidden units, the neural networks that we propose and will refer as Inner 
Product networks presents hidden units with local influence as RBFs units, but with the ability to 
influence the entire input training space has the MLPs. On the other hand, the network proposed is linear 
in the parameters that we have to estimated, what can be achieve with the calculation of the pseudo-
inverse matrix. These networks have an activation function given by ( )( )( ) tanh 1f X k X W= − ⋅ , 

meaning that we have a model hyper parameter, k , that we need to define. 
 

3. Application examples 
 
In order to test the network proposed we used two artificial problems. The first one, a regression type 
problem, that we call “function detection problem”, has an input training set of 100 points uniformly 
randomly chosen in the interval [ ]5,5−  where the desired outputs where generated by 

25sin( ) 0.3i i i iy x x ε= + +  where [ ]5,5ix = − , and (0,1)i Nε ∩  is gaussian noise, added to the generation 
model function. An Inner Product network was used in order to estimate the generation model of the data. 
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After calculating the weights for the connections between hidden and output units with the pseudo-
inverse matrix , we obtain the network performance by calculating the medium square error (MSE) in a 
new set, the validation set, composed by 100 other points generated the same way as the training set. 
In this first study of the Inner Product networks we were interested in finding out the influence of the 
model hyper parameter, k , used in the activation function. We analysed the relationship between the 
network performance (the MSE in the validation set) and the variation of k . In table 1 we have some of 
the results obtained. 
 

Value of k  MSE in the training set MSE in the validation set 

0.00001 14.330 15.208 
0.0001 1.611 3.689 
0.001 1.611 3.688 
0.01 0.856 1.023 
0.1 0.841 1.1747 
1.0 0.647 213990.903 

 
Table 1 – Variation of the network performance (MSE in the training and the validation set) in function of the value used 
for k. 
 
It’s possible to observe a regularization behaviour in the value of k . For small values of  k  the network 
doesn’t have the capability to learn the structure of the data generation model (ex: 0.00001k = ), on the 
other hand, for higher values of k  the network presents a over learning behaviour (ex: 0.00001k = ).The 
choice of the value of k  becomes a critical point for the Inner Product networks. We are convicted that 
the optimal value, of k , is problem dependent and we suggest to use an intensive searching procedure 
with cross validation for choice criterion. Let us refer that for the “function detection problem” the 
optimal value found for k  (in the sense of minimizing the MSE in the validation set) was 0.0014. 
 
The second problem used was a classification type problem. The input data are 2ℜ  values classified in 
one of two classes. The frontier separating the two classes forms a double “F”. We generate 800 data 
points following a uniformly randomly distribution over the [ ] [ ]0,3 0,4×  rectangle. For the validation set, 
another 800 points were generated using the some procedure. Several Inner Product networks were 
trained for different values of k . For each case the MSE in the training and validation set were calculated 
as well the classification error in both sets. In table 2 we may observe the results obtained for some values 
of k . 
 

Value of k  MSE in the training 
set 

Classification error in 
the training set  

MSE in the validation 
set 

Classification error in 
the validation set 

0.0001 0.378263 13.125% 0.375909 13.333% 
0.001 0.319434 12.000% 0,316013 12.000% 
0.01 0.266083 0.875% 0.291842 1.033% 
0.1 0.208813 0.475% 0.238269 0.500% 
1.0 0.118934 0.263% 0.145862 0.367% 
5.0 0.062200 0.075% 0.561323 0.133% 

10.0 0.041209 0.025% 0.300351 0.267% 
15.0 0.026433 0.025% 17.203581 0.300% 
20.0 0.019240 0.000% 99.613418 0.0433% 

Table 2 – Variation of the MSE and classification error in the training and validation set, for some values of k. 
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Figure 1 – a) Training data and data generating function. b), c) and d) Function estimated by an IP network whit k=0.0014,  
k=0.00001 and k= 1.0, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 – Training data and estimated frontier between the two classes. a) k=0.001 b) k=0.01 c) k=5.0 and d) k=20.0 
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