Neural Computation and Applications in Time
Series and Signal Processing

Georg Dorffner
Dept. of Medical Cybernetics and Artificial Intelligence
University of Vienna
and
Austrian Research Institute for Artificial Intelligence

Abstract

This paper presents a brief overview on models from neural computation and their
applicability to problems in time series and signal processing. Much focus is put
on pointing out the relationships between neural networks and more traditional
methods for time series analysis. For more details on some of the advanced models,
the reader is refered to the bibliography.

1 Neural computation

Neural computation in pattern recognition refers to an array of models and
methods originating in the first attempts to formalise information processing
in the brain. A typical neural network, depicted in figure 1, is of the form

k n
2§ =Y o f (Y wazi") (1)
=1 i=1

or

k n
2§ =2 uf (J > (wi —z{")?) (2)
=1 =1

where 7" and x?”t stand for input and output values, respectively, and

vy; and wy stand for the so-called weights, or degrees of freedom, of the
models. Equation 1 corresponds to the well-known multilayer perceptron
(MLP), when f is a so-called sigmoid function, such as f(z) = —t= or
f(z) = tanh(x). Equation 2 corresponds to the rdial basis function network
(RBFN), with f, for instance, being the Gaussian function f(z) = exp(—z?).

The main strength of this type of neural network is that it can approxi-

mate any arbitrary nonlinear function 7° = F(F™), provided the number

Figure 1: A generic multilayer neural network for function approximation

k of so-called hidden units is large enough ([Hornik et al. 1989]). Thus they
are called universal function approximators. Approximation is done by a
weighted superposition of simple nonlinear functions (the sigmoid or the
Gaussian). [Bishop 1995] calls this a semi-parametric estimation of a func-
tion, since on one hand the function F' is parameterised through the weights,
but within the capacity of a given network little has to be assumed about
the shape of the function (similar to non-parametric estimates).

When it comes to pattern recognition, neural networks have little to
do with the brain, despite their original motivation (the weighted sum in
equation 1 and the sigmoid were introduced to roughly mimic the poten-
tial accumulation and firing behavior of biological neurons). Instead, they
are advanced methods for nonlinear exploratory and inductive statistics.
Learning in neural networks (also called training) must be seen in the same
realm. Weights are usually derived during model estimation in a mazimum
likelihood framework, using data from a so-called training set. In its simplest
form (see below), maximizing likelihood amounts to minimizing the summed
squared error E = Zij\il(xgarget — z99)2 | where '3 is given by the train-
ing samples. T'wo types of applications are usually distinguished: regression
— i.e. estimating continuous output values — and classification. For more
details on neural networks for pattern recognition, see [Bishop 1995].

Neural computation nowadays encompasses a much wider array of meth-
ods than the original neural networks. They include support vector machines
(for which the lower part of the network is kept fixed through the choice of

proper kernel functions), independent component analysis for source separa-
tion, Gaussian and other mizture models, and many types of unsupervised
learning methods. What they all have in common is that

e there is a strong focus on nonlinearity
e complexity is approximated by superpositions of simpler building blocks
e thus, focus is on semi-parametric methods

In this paper, we restrict ourselves to universal approximators (such as
the MLP or RBFN), since they are mostly used in time series and signal
processing. An important extension, which is of interest with respect to
time series, are so-called recurrent neural networks. They are characterized
by the introduction of feedback connections from hidden or output units to
the input layer (see figure 7 and 8 below).

2 Time Series Processing

Time series processing is the field of pattern recognition and analysis of
time-varying data. A typical time series problem is given by a vector of
observable measurements at consecutive points in time ¢:

ft,t:O,l,... (3)

If 7 is indeed a vector, i.e. more than one variable is observed, one
speaks of a multivariate time series: if it is a scalar, the time series is called
univariate. The representation of a time-varying set of variables in equation
3 makes several important assumptions:

e Time is discrete, meaning that the observables are measured only at
discrete points in time. This is different from so-called continuous time
models. In signal processing terms one could speak of ”sampling” the
original process observable into the variable vector .

e Points in time for measurement are equi-distant, meaning that there
is a constant time interval between points of measurement.

We restrict our discussion in this paper to this kind of discrete-time
processes, since they are the most common models for practical applica-
tions and are most amenable to analysis with common methods from neural
computation.

The length of the time interval depends on the type of application. Typ-
ical examples of time series are

e sampled acoustic or biosignals (time interval usually milli- or nanosec-
onds)

e measurments of oxygen saturation in intensive care (typically seconds)

e measurements of process parameters in industry (typically seconds or
minutes)

e temperature measurements in meteorology (typically hours)
e stock or option prices in the financial markets (typically days)
e econometric measures like inflation rate (typically weeks)

e the number of sunspots (years)

This overview of possible applications highlights that there is no principle
difference between what is called signal processing and what is called time
series processing. Formally the methods are the same or very similar, only
the time interval (short for signals, longer for time series) and the focus of
the application usually differs. In signal processing, typical problems are

e Filtering of the signal, i.e. changing its general characteristics

e Source separation, i.e. considering the signal as a mixture of unknown
sources and dividing it into them

Typical problems in the domain of time series processing are

e Forecasting, i.e. estimating the future development of the time series

e Noise modeling, i.e. estimating the stochastic variability of the time
series

Problems common to both domains are

e Pattern recognition, i.e. recognising typical wave forms or subsequences

e Modeling of the underlying process, i.e. finding a mathematical model
that describes the generating process underlying the observable vari-
ables.

In this paper, the focus will be on modeling and forecasting.

Figure 2 depicts two typical time series, which will be used as examples
in this paper — one from finance, namely returns from the daily Austrian
stock exchange index ATX, and one from astronomy, namely the annual
number of observed sunspots since the 18th century (this is a well-known
benchmark time series).

The former is a typical case of a rather noisy time series. It is derived
from differencing the original time series of daily index values by calculating

Serie Sunspots
T

N
S
S

Anzahl der Sonnenflecken
* ® 5 © 2 >)
S S S S S S S
T T T T T T T

IS
S
T

20

0 !
1700 1750 1800 1850 1900

Figure 2: Two typical time series: Returns from the Austrian stock exchange
index ATX (left), and the annual number of subspots since 1770 (right).

Tt = T — Tg—1 (4:)

Differencing is a proper preprocessing method for many applications in
order to remove trends and some instationarities. In financial applications
this has the direct interpretation as “returns”, i.e. potential wins or losses
one would get when trading the commodity.

The latter is a typical case of a more structured time series. What can be
observed are distinct so-called seasonalities, i.e. recurring periodic patterns
in the time series. For optimal modeling, such seasonalities should also be
removed, e.g. by the following type of differencing:

Yt = Ty — Tt—s (5)

where s is the time interval between seasonal peaks.

3 Forecasting as modeling

In this section we will see that forecasting time series is akin to finding a
model for the generating process. We will restrict ourselves to univariate
time series, keeping in mind that all models can easily be extended to the
mulitvariate case.

I
1950

2000

3.1 Autoregressive modeling and feedforward networks

Forecasting can be interpreted as making optimal use of past information
to predict the future. Of course, in real-world applications most of the time
we must assume stochasticity, i.e. forecasting can only lead to an estimate
in terms of an expected value or expectation, from which actual observations
will differ due to unpredictable influences, modeled as a noise process.

One of the most common assumptions in time series forecasting is based
on taking past observations as the sole past information available. The
expected value is assumed to a be a function of a fixed, and limited, number
of past observations. The noise process is assumed to be additive. This
leads to the following expression:

Ty = F(i_1,%-2,...,T—p) + & (6)

For convenience we denote X;, = (z¢—1,2¢—2,...,%t—p). € is usually
refered to as a random shock. This type of model is generally called an
autoregressive (or AR) model, since it amounts to a general regression of
the observable variable x; over its own past values. p is called the order
of the model and corresponds to the number of past observations used in
the regression. The best forecast after model estimation is to output the
expected value p; = F(X;,).

Using a limited number of past observations corresponds to the common
Markov assumption, which states that all we have to know to predict the
future is the present state of the system, in this case given by the vector of p
past observations. In other words, we assume that we do not have to know
the entire evolution of the time series in order to predict.

It is obvious that equations like 6 can be seen both as a model for fore-
casting (i.e. the best prediction is, after an appropriate estimation of the
parameters describing f, to forecast the expected value p, = £, = F(Xyp))
and as a generative model describing the underlying process. Given proper
starting values, equation 6 can be used to generate time series values with
the same characteristics as the original observations, drawing €; from the
assumed distribution.

The most commonly used version in time series processing literature is
the class of linear AR models, i.e. where F(z) is a linear function of the
following type:

p
T =) aiT—it+ & (7)
i=1

The noise process behind ¢, is usually assumed to be identically indepen-
dently distributed (i.i.d.), typically following a Gaussian distribution with
zero mean and a given variance o2, i.e. € ~ N(0,02).

The simplest form of a linear AR, process is one of order 1 with a; =1
and € ~ N (0, 1):

Ty = Ti—q + € (8)

This process is called random walk. The expected value, and therefore
the best possible prediction, for x; is the previous value z;_1. In other
words, the process is characterised by the fact that at each time step an
i.i.d. disturbance ¢; is added to the observed variable. If a given time series
follows a random walk, the best possible prediction is trivial and leads to
no new information. This process is especially important for domains like
financial time series processing, since it corresponds to the hypothesis of an
efficient financial market. The hypothesis says that at each time step (e.g.
each day) all available information that could be used to beat the market
(i.e. to profit from a non-trivial prediction) has already been absorbed by the
market mechanisms, rendering such profitable forecasting impossible. But
also in other domains it is important to keep the random walk in mind before
applying any more complex prediction method, and always benchmark such
a model against it.

Naturally, more complex time series processes exist, also in the financial
markets, and thus its is now worthwhile to explore how neural computation
can enhance the common linear AR models. From equation 6 the main con-
tribution from neural computation in this context becomes clear: any uni-
versal approximator can potentially be used to model an arbitrary nonlinear
function F(z). An example is shown in figure 3. A multilayer perceptron,
as an example, can be used to model an arbitrary nonlinear autoregressive
process. The way the past p observations z; ; are used is usually called
time window, or sometimes a special form of time delay, in neural network
literature.

3.2 Complex noise models

Nonlinearity is not the only sensible extension to the classical linear AR
model in equation 7. Recently, research has focused on modeling more com-
plex noise processes than the ususal Gaussian distribution with constant
variance o2 ([Schittenkopf et al. 2000, Neuneier et al. 1994, Husmeier 1999]).

[Bishop 1995] has demonstrated that the minimization of the summed
squared error in regression (and, therefore, in autoregression), assuming
linear output activation functions, corresponds to a maximum likelihood
estimation assuming constant Gaussian noise N(0,02). After estimation
(“learning”), o corresponds to the normalised residual quadratic error. This
is illustrated in figure 4. An autoregressive process of order 1 can be visu-
alised by plotting all past observations x; 1 against the present observations
Z, to be forecast. The noise process determines how the actual observations

Figure 3: A feedforward neural network as a nonlinear autoregressive model.

are distributed around the expected value, given by the, potentially nonlin-
ear, function F'(z;_1).

The illustration in figure 4 makes clear that the noise around the ex-
pected value does not have to be constant, nor does it have to be Gaussian.
Instead, it can be seen as also being dependent on the input, i.e. the past
observations. In formal terms

e ~ D(6), (9)

where .
0= g(Xtp) (10)

D is an arbitrary parameterised distribution with parameters g and is
called the conditional distribution, since it depends on the past. One could
also speak of a time-dependent noise distribution, since it is permitted to
change at every time step.

Estimation of the models is straight-forward if one sticks to the maximum
likelihood framework suggested above. The model likelihood becomes

N
L=[ld@=g(x{)) (11)
i=1
where N is the number of time series samples in the training set, and d
is the probability density function corresponding to D.
The simplest extension to the standard AR case is sticking to the Gaus-
sian distribution but keeping the variance o2 time-dependent. The likelihood
in this case is

Figure 4: Plotting x; over x;_1 can visualize the role of the noise process in
autoregression. For any particular input x; 1, the density function of the
noise process €; describes the distribution of actual observations correspond-
ing to that input. This makes clear that the noise does not have to constant,
i.e. independent from x;_1, or even Gaussian.

N @D —pu(xy p))?
H S 202(X¢,p) (12)
i—1 1/2mwo? (Xt’p)

In neural networks terms this means an additional output unit corre-
sponding to the estimate of o2, as depicted in figure 5. In time series lit-
erature this case is known as a heteroskedastic time series, i.e. a time series
with time-dependent variance of its noise process. This is of particular in-
terest in financial time series analysis, since it corresponds to the case of
a time-dependent wvolatility of a commodity. Looking at the ATX return
series, one sees that this is apparently the case. At different points in time
the variance of returns appears to be of different quantity, which can be
modeled by a heteroskedastic process. When building a model for option
pricing, this dependency is of particular interest. But this is not the only
application where heterosketasticity plays an important role. The fact that
knowing about the variance of the noise process permits the estimation of
a reliable confidence interval in which actual observations are expected to
lie highlights the great potential of using such extended models. The noise
process in this case is no longer i.i.d. — the distributions guiding the ran-
dom shocks are still independent, but no longer identical (although still all
Gaussian).

Figure 5: A simple extension to the feedforward neural network to account
for heteroskedasticity. An additional output for o7 is added to account for
its potential nonlinear dependence on X,

What has been said about the general (nonlinear) neural network case
is, of course, also true for the linear case. It is worth noting that a particular
type of linear! case to model heteroskedastic time series is the well-known
autoregressive conditional hetereoskedasticity (ARCH) model [Engle 1982],
frequently used in finance. The ARCH model is defined as

P
Uf = Zairf_i (13)
i=1

where 72_; are past returns of the time series (i.e. the values of the differ-
enced original time series) and o? is the variance of a Gaussian distribution.
In this case, u¢, i.e. the expected value of the time series r;, is assumed to
be 0 (or modeled separately using an AR model, replacing r; by the residu-
als of that process). Comparing equation 13 to 12 one sees that the neural
network case is a nonlinear generalisation of the ARCH model.

Another extension is to choose a parametric probability density function
other than the Gaussian, in order to model specific characteristics of the
conditional distribution of time series values. In financial time series analy-
sis, it is known that conditional distributions (as well as unconditional ones)
can have a higher kurtosis than a Gaussian. For these purposes, the use of
a student t-distribution is rather commen.

!Strictly speaking, the ARCH model is quadratic in r;—; but linear in 72_;

In the spirit of neural computation, an even more general model appears
appropriate in those cases where conditional distributions are unknown but
expected to be non-Gaussian. Any arbitrary density function can be ap-
proximated by a mizture of Gaussians. Consequently, [Bishop 1994] has
suggested the so-called mizture density network (MDN) to model arbitrary
noise distributions in regression. Several authors ([Schittenkopf et al. 2000,
Neuneier et al. 1994, Miazhynskaia et al. 2003]) have demonstrated the vi-
ability to use mixture density networks for arbitrary conditional return dis-
tributions in financial time series analysis.

The definition of a mixture density network is straight-forward given
equation 11, if one inserts the following density function:

) - (= pi (X4 p))?

i 7['i()(t 2
(i, o, 7) = 30 —Ztw) (14)

Introducing arbitrary nonlinearity, this amounts to a neural network with
3k outputs, each one corresponding to one of the parameters of the mixture,
in a straight-forward extension of the network in figure 5. Since there is
no reason to assume that the three sets of paramaters — namely the centers
i, the widths 0'@-2 and the weights, or priors, m; — have related nonlinear
dependencies on the past, the choice of three different networks is often more
appropriate. Learning (model estimation), as was the case for the simpler
cases above, amounts to maximising the corresponding likelihood function
(minimising the negative log likelihood, respectively). The corresponding
error, or loss, function no longer corresponds to a simple squared error,
however.

The advantage of using mixture density networks in forecasting is that
now arbitrary conditional distributions can be modeled in a semi-parametric
way. By replacing the multilayer network with a single-layer perceptron, lin-
ear versions can be obtained as well. [Miazhynskaia et al. 2003] has shown
that this leads to more reliable confidence intervals for the estimated fore-
casts, which in their case can be used in risk analysis.

One remark, however, is in place. Mixture models — similar to the ap-
proximation of nonlinear functions in a neural network — usually suffer from
an identifiability problem. In other words, parameters resulting from esti-
mations cannot be interpreted by assigning a meaning to them. Similarly, it
can no longer be guaranteed that it is really “pure” noise that is modeled.
This is exemplified in figure 6, depicting an MDN estimate for the sunspot
time series®. An autoregressive mixture density network of order 1 is used to
model the distributions x; (plotted against z; 1). It is obvious that an AR
model of order 1 is insufficient to model the structure behind the time series.

2Note that the original, although normalised, time series is used, without removing
seasonalities

* *

Figure 6: The resulting estimations from training a mixture density network
with the subspot data. Two lines of error bars are drawn depicting the
centers and widths of the two Gaussians of the mixture, dependent on the
input x;—1. Especially in the middle range, the resulting mixture density is
bimodal reflecting the fact that in an AR(1) view, for each input the next
value is about as likely to be higher as it is to be lower. The two additional
lines depict the priors 7; for each Gaussian in the mixture.

Given a time series value around 0, the probability of the series to go up is
about equal to it going down. For reliable forecasts of the expected value, an
order of at least 2 would be necessary. The resulting model estimate in figure
6 describes this as a bimodal distribution for each z;_; around the value 0.
This apparently complex noise process thus captures some of the structure
in the data, which would more appropriately be captured by a second-order
AR process. Choosing too general a model, therefore, no longer permits the
strict distinction between structure in the data and noise. Therefore such
models should be used with care.

3.3 Moving average models and recurrent networks

Another common class of models uses a different kind of past information
for forecasting. Instead of past time series values, the expectation for x;
is assumed to depend on past random shocks €;_;. In the linear case this
amounts to:

F(X; p, Ey)

Xr—1

Figure 7: A recurrent Jordan network as an instantiation of a nonlinear
moving average model.

q
Ty = — Z biEt_j (15)
=0

For convenience, we denote E;, = (€4—1,€—2,...€—4). By letting the
index run from 0 to ¢, the current random shock is included in this model
(bp = 1). This type of model is called a moving average (MA) process of
order ¢g. It has been shown that any finite AR process corresponds to an
MA process of infinite order, and vice versa. Still, a finite MA process, or
even the combination of AR and MA processes (so-called ARMA models)
can be viable models for a given time series.

In analogy to above, neural networks can be used to generalise linear
MA process to arbitrary nonlinear versions. The question is, however, what
input to use to the network, if past random shocks are not really known.
[Connor et al. 1992] and [Dorffner 1996] have demonstrated that using past
estimates, i.e. past outputs of the network, as inputs, in the limit of the
model converging to the true model, amounts to being equivalent to using
past random shocks as inputs. If the network outputs the correct expected
value for xy, &y = pq, then ¢, 1 = x4 1 — Z3-1. In other words, &; 1 im-
plicitly contains the information about the past random shock and can thus
be used as an input to the network. Using past estimates amounts to a
recurrent connection of the network’s output to the input (see figure 7), i.e.
a recurrent network usually called a Jordan network (see [Dorffner 1996] for
the theoretical equivalence to an MA process in the limit).

We can therefore conclude: Recurrent Jordan networks are instantiations
of nonlinear moving average processes. Little is known, however, about

convergence properties of this type of model (i.e. whether and how quickly
they converge toward the true model, which is a prerequisite for being an
MA process).

In this context, it is worth looking at another common time series model
and its nonlinear generalisation. For heteroskedastic time series, a property
known as wvolatility clustering is often observed. This means that a high vari-
ance (high volatility) is often followed by several time steps of high variance.
For instance, in the financial markets large shocks tend to prevail for some
time. To model this property, the GARCH model (generalised autoregres-
sive conditional heteroskedasticity) was introduced ([Bollerslev 1986]):

p P
op =Y airi;+ Y biog (16)
i—1 i=1

Couched in neural networks terms, as the nonlinear ARCH above, this
again means using past estimates (this time of ¢2) as input to the network.
Therefore, a nonlinear GARCH model can be obtained by introducing the re-
current mizture density network [Schittenkopf et al. 2000, Tino et al. 2001].

3.4 State space models and recurrent networks

Another common method for time series processing are so-called state space
models [Chatfield 1989]. Here the assumption is that the current state (in
terms of the Markov assumption) is not given by the past observations di-
rectly but is hidden. The observations thus depend on a state vector &

Ty = Cgt + € (17)

where C is a transformation matrix. The time-dependent state vector is
usually modeled by a (multivariate) linear AR(1) process:

5 = A1 + Bfj, (18)

where A and B are matrices, and 7; is a vectorial noise process, similar to
€; above.

If we further assume that the states are also dependent on the past time
series observations (an assumption, which is common, for instance, in signal
processing — see [Ho et al. 1991]), and neglect the additional noise term Bij;:

5 =A% 1 +DX,, (19)

then we basically obtain an equation describing a recurrent neural network
type, known as Elman network (after [Elman 1990]), depicted in figure 8.
The Elman network is an MLP with an additional input layer, called the
state layer, receiving as feedback a copy of the activations from the hidden
layer at the previous time step. If we use this network type for forecasting,

copy

Xip

Figure 8: The Elman recurrent network as an instantiation of the state-space
model.

and equate the activation vector of the hidden layer with §, the only differ-
ence to equation 19 is the fact that in an MLP a sigmoid activation function
is applied to the input of each hidden unit:

5 = f(Afi_1+DX,p) (20)

where f is a sigmoid function. In other words, the transformation is not
linear but the application of a logistic regressor to the input vectors. This
leads to a restriction of the state vectors to vectors within a unit cube, with
non-linear distortions towards the edges of the cube. Note, however, that
this is a very restricted non-linear transformation function and does not
represent the general form of non-linear state space models (see below).

Like above, the strong relationship to classical time series processing
can be exploited to introduce “new” learning algorithms. For instance, in
[Williams 1992] the Kalman algorithm, developed for the original state space
model (Kalman filter) is applied to general recurrent neural networks.

As hinted upon above, a general non-linear version of the state space
model is conceivable, as well. By replacing the linear transformation in
equations 17 and 18 by an arbitrary non-linear function, one obtains

Z=F(5)+6 (21)

MLP or RBFN T

MLP or RBFN T

Figure 9: An extension of the “Elman” network as realization of a non-linear
state-space model

St = Fa(8;_1) (22)

Like in the previous sections on non-linear ARMA models, these non-linear
functions F; and Fy could be modeled by an MLP or RBFN. The resulting
network is depicted in figure 9. An example of the application of such a
network is [Kamiho et al. 1993].

It has frequently been noted in literature that the state vector § ap-
parently implicitly contains information of the entire past of the time series.
Therefore, recurrent networks seemingly are not limited to a fixed time hori-
zon, as are ARMA models. In practice, however, this is not true. The influ-
ence of past information vanishes exponentially, leading to a model that ac-
tually only takes recent information into account. A similar observation ap-
plies to model estimation. The gradient in minimizing the negative log like-
lihood, which must be “propagated back” via the recurrent connections, also
vanishes exponentially ([Bengio et al. 1994]), rendering training difficult in
many cases. Thus there is evidence that in practical applications, recurrent
networks can have a disadvantage against feedforward networks, although
potentially equally powerful (see, for instance, [Hallas & Dorffner 1998]).

4 Discrete valued and symbolic time series

So far, we have discussed time series with continous values z;. In many
applications, however, observations can only take one of a small finite set
of values. Examples are binary measurements or very coarsely quantised
signal values. A special case are symbolic time series, where values do not
have an order (or the order is neglected) and can be considered as symbols
from a given finite alphabet, i.e. z; € {s;}, where s; are arbitrary symbols.
Examples are letters in a text, amino acids in a gene string, or continuous
time series that have been quantised into a small number of intervals (e.g.
'up’ and ’down’ for stock price returns).

Forecasting can again be viewed as estimating expected values based
on past information. The main difference is that probability densities are
replaced by discrete probabilities for the symbols in the alphabet. The
equivalent to an AR model would be looking at the string of past p symbols
and finding estimates for each symbol to follow the string. This conditional
probability distribution can be denoted as P(z¢|z¢—12—2 ... Zi—p), where the
condition part denotes the concatenation of the past p symbols.

This type of model is called a Markov chain (or Markov model) of order
p. The probabilities can easily be estimated as the empirical probabilities
(frequencies) that each symbol in the alphabet follows the particular given
string. However, this type of model easily runs into problems for higher
orders, since long substrings can be rather rare in the entire time series,
rendering the estimation of empirical probabilities impossible.

Therefore, several authors ([Ron et al. 1996, Tino & Dorffner 2001]) have
proposed so-called wvariable-length Markov models which only consider con-
texts (i.e. substrings) that occur frequently enough in the time series. The
approach by [Tino & Dorffner 2001], the so-called fractal prediction machine
(FPM), not only has a very intuitive geometric interpretation, but also
bears an important similarity to another class of recurrent neural network.
Basically, each potential substring is mapped onto a point in a logy(n)-
dimensional space (where n is the size of the alphabet), following a simple
mapping borrowed from iterated function systems ([Barnsley 1988]). This
is illustrated in figure 10. When this is done for every substring of length
p, the resulting distribution of points has the following interesting property:
Strings that have a large common suffix (i.e. have a large common ending
substring) are mapped onto points that are close together in space. There-
fore, clusters of points correspond to substrings that frequently occur in the
time series. Using a simple clustering algorithm, this can be used for iden-
tifying substrings, for which a reliable probability estimate for subsequent
symbols can be found.

The result can be viewed as a stochastic automaton, each state of which
forms an equivalence class of substrings. For each such state, probabilities
can be estimated by calculating the relative frequencies of symbols that
follow. This view leads to an analogy to state space models and recurrent
neural networks, as was exemplified above for continuous-valued time series.
As shown in [Tino & Dorffner 1998], the mapping of the FPM corresponds
to the recurrent part of a second-order neural network, while the feedforward
part would take the role of estimating probabilities for each state.

5 Signal filtering

As stated above, there is no principled formal distinction between what is
usually termed time series processing and signal processing. The main differ-

...uUUDuduDuDUddDUuD@UududuuuddduududuDUDuDDuDquDduDuududdduudduDUDUuduDUudUuduuUDuu...

represent -
work window

u U u 8] u 8]
2 d 8] u
[0,1] ” ”
D d D d D d
u U u U u U
T :
d u
D d D d D d

Figure 10: The basic mechanism of a fractal prediction machine to map
substrings of symbolic sequences onto points in space: Each symbol in the
alphabet is assigned a corner in the logy(n)-dimensional space for an al-
phabet of size n. For a given work window, all symbols in the resulting
substring are processed in order, starting with the most recent one. As in
an iterative function system, an affine mapping of the entire space onto one
of the n subspaces (“corners”) is performed, one particular mapping for each
symbol. By tracing the center point of the space through all the mappings,
the end point reached corresponds to the entire substring. The interesting
property is that substrings with long common suffixes are mapped to points
that are close in space.

ence lies in how problems are phrased and not in the chosen methodology.
A common problem for signal processing is finding appropriate filters to
describe or generate signals.

Digital filters can be depicted in a way that is pratically identical to
autoregressive and moving average models. The former case, for instance,
corresponds to the so-called finite impulse response filters. Therefore, there
is a strong correspondance between forecasting and filtering models.

Autoregressive models can also be shown to be equivalent to the well
known spectral analysis of signals. In other words, parameters of a linear
AR model of a given order can be used as signal descriptors in a similar
way as a spectrum derived from Fourier analysis. This gives rise to ap-
plications in recognizing typical signal patterns (waveforms) or to classify
signals. A typical example is the classification of electroencephalographic
(EEG) recordings of a person during sleep into one of several sleep stages
(see, e.g., [Sykacek et al. 2002]).

Another important function of AR filtering is that of denoising. Accord-
ing to the formulation in equation 6, the model divides the signal into signal
content (the predictable component) and a (usually white) noise process.
The residuals after model estimation thus corresponds to noise that can be
removed from the original signal.

From what we have seen in time series processing, it becomes clear that
neural networks lend themselves for nonlinear extensions of classical linear
filters ([Haykin 1986]). However, they should be seen as means to an end (i.e.
more optimal denoising) but due to the identifiability problem mentioned
above they cannot be used in the same way to describe signal characteristics
in a parametric manner.

6 Practical considerations

We have seen that neural networks are powerful models that can be used
in various time series and signal processing applications. Straight-forward
extensions of simple mathematical principles have lead to advanced models
desribing time series and signals in an intricate way (e.g. with respect to the
noise process). Power in modeling, however, always comes with a price that
has to be paid through extra care and sound validation techniques, without
which neural networks are easily mis-applied.
In particular,

e Semiparametric nonlinear techniques need a sensible model selection
and validation strategy. In general pattern recognition, usually resam-
pling strategies such as n-fold cross-validation are applied to this avail
— meaning that multiple runs with different training and independent
validation sets must be performed. In time series processing it can be
shown that, in order to be truly independent, validation sets should

always be observations that occur after the training set. This leads
to a sliding window technique that should be applied when validating
process models in a maximum likelihood framework (see, for instance,

[Schittenkopf et al. 2000]).

e Models with a large number of degrees of freedom (e.g. weights in a
neural network) need large number of training samples. Stationarity
of the time series becomes an important issue here. In other words,
training sets for time series processing can often not be extended to
arbitrary size, since the main characteristics of the time series or signal
might change. Thus there often is an inherent limit to the complexity
of the models that can reliably be estimated.

e It is not a priori clear for a given time series whether nonlinearity in-
deed plays a large role. In the financial markets, for instance, there
is growing evidence that arbitrary nonlinearity in a model cannot sig-
nificantly improve forecasting performance. Therefore, any complex
neural network model should always be carefully validated against its
linear or otherwise more parametric counterparts.

o Identifiability, as mentioned several times in this paper, might not be
a problem for many engineering solutions (e.g. finding good forecasts).
But for many applications (e.g. filtering) it does play a role and of-
ten leaves neural networks useless (or at least, difficult to deal with),
despite their potential power in modeling.

7 Summary and conclusions

The purpose of this paper was to give a short overview of the potential of
neural computation methods in modeling time-varying data. Much emphasis
was put on showing that neural networks are embedded in more traditional
time series theory and have the potential to provide powerful alternatives
and extensions, especially with respect to nonlinearity. Time series and
signal processing, however, is a field with a long traditon that has not waited
for neural computation to provide viable models. Linear ARMA models,
Markov chains, linear filters, etc. are rather powerful in themselves and must
therefore always be considered before blindly applying a neural network.

Many important topics have not been addressed, such as deterministic
chaos in nonlinear processes, the relationship between recurrent networks
and stochastic automata, etc. Also, a large part of neural computation,
from support vector machines, wavelet networks to independent component
analysis could not be dealt with. Nevertheless, the hope is that the reader
could get a glimpse of the fascinating potentials of advanced models to
desribe time-varying data, which is prevalent in a great many of practical
applications.

References

[Barnsley 1988] Barnsley, M.F.: Fractals everywhere, Academic Press, New
York, 1988.

[Bengio et al. 1994] Bengio Y., Simard P., Frasconi P.: Learning long-term
dependencies with gradient descent is difficult, IEEE Trans. Neural
Networks 5(2), 157-166, 1994.

[Bishop 1994] Bishop, C. M.: Mixture density networks, Neural Computing
Research Group Report: NCRG/94/004, Aston University, Birming-
ham, 1994.

[Bishop 1995] Bishop C.: Neural Networks for Pattern Recognition, Claren-
don Press, Oxford, 1995.

[Bollerslev 1986] Bollerslev, T.: A generalized autoregressive conditional
heteroskedasticity, Journal of Econometrics, 31 (1986), 307-327.

[Chatfield 1989] Chatfield C.: The Analysis of Time Series — An Introduc-
tion, Chapman and Hall, London, 4th edition, 1989.

[Connor et al. 1992] Connor J., Atlas L.E., Martin D.R.: Recurrent Net-
works and NARMA Modeling, in Moody J.E., et al.(eds.): Neural In-
formation Processing Systems 4, Morgan Kaufmann, San Mateo, CA,
pp-301-308, 1992.

[Dorffner 1996] Dorffner G.: Neural networks for time series processing,
Neural Network World, 6(4)447-468, 1996.

[Elman 1990] Elman J.L.: Finding Structure in Time, Cognitive Science
14(2), 179-212, 1990.

[Engle 1982] Engle, R. F.: Autoregressive conditional heteroskedasticity
with estimates of the variance of U.K. inflation, Econometrica, 50
(1982), 987-1008.

[Hallas & Dorffner 1998] Hallas M., Dorffner G.: A Comparative Study on
Feedforward and Recurrent Neural Networks in Time Series Predic-
tion Using Gradient Descent Learning, in Trappl R. (ed.), Cybernetics
and Systems ’98 - Proc. of 14th European Meeting on Cybernetics and
Systems Research, Austrian Society for Cybernetic Studies, Vienna,
pp-644-647, 1998.

[Haykin 1986] Haykin S.: Adaptive Filter Theory, Prentice-Hall, Lon-
don/New York/Englewood Cliffs, NJ, 1986.

[Ho et al. 1991] Ho T.T., Ho S.T., Bialasiewicz J.T., Wall E.T.: Stochastic
Neural Adaptive Control Using State Space Innovations Model, in In-
ternational Joint Conference on Neural Networks, IEEE, pp.2356-2361,
1991.

[Hornik et al. 1989] Hornik K., Stinchcombe M., White H.: Multi-layer
Feedforward Networks are Universal Approximators, Neural Networks
2, 359-366, 19809.

[Husmeier 1999] Husmeier D.: Neural Networks for Conditional Probability
Estimation, Springer, Berlin/Heidelberg/New York/Tokyo, 1999.

[Kamiho et al. 1993] Kamijo K., Tanigawa T.: Stock Price Pattern Recogni-
tion: A Recurrent Neural Network Approach, in Trippi R.R. & Turban
E.(eds.): Neural Networks in Finance and Investing, Probus, Chicago,
pp-357-370, 1993.

[Miazhynskaia et al. 2003] Miazhynskaia T., Dorfiner G., Dockner E.: Risk
Management Application of the Recurrent Mixture Density Network
Models, to appear in: Proceedings of ICONIP/ICANN 2003, Springer
Verlag, 2003.

[Neuneier et al. 1994] Neuneier R., Finnoff W., Hergert F., Ormoneit D.:
Estimation of conditional densities: a comparison of neural network
approaches”, in: Marinaro M., and P. G. Morasso (eds.) ICANN 9/ -
Proceedings of the International Conference on Artificial Neural Net-
works, Berlin: Springer, 689-692.

[Ron et al. 1996] Ron, D., Singer, Y., Tishby, N.: The power of amnesia.
Machine Learning 25, 1996.

[Schittenkopf et al. 2000] Schittenkopf C., Dorffner G., Dockner E.J.: Fore-
casting time-dependent conditional densities: A semi-nonparametric
neural network approach, Journal of Forecasting, 19, 355-374, 2000.

[Sykacek et al. 2002] Sykacek P., Dorflner G., Rappelsberger P., Zeitlhofer
J.: Improving biosignal processing through modeling uncertainty:
Bayes vs. non-Bayes in sleep staging, Applied Artificial Intelligence,
16(5)395-421, 2002.

[Tino & Dorflner 1998] Tino P., Dorffner G.: Recurrent Neural Networks
with Iterated Function Systems Dynamics, in NC’98, Proceedings of
the ICSC/IFAC Symposium on Neural Computation, Vienna, Austria.,
pp-526-532, 1998.

[Tino & Dorfiner 2001] Tino P., Dorffner G.: Predicting the future of dis-
crete sequences from fractal representations of the past, Machine Learn-
ing, 45(2)187-217, 2001.

[Tino et al. 2001] Tino P., Schittenkopf C., Dorffner G.: Financial volatility
trading using recurrent neural networks, IEEE Transactions on Neural
Networks, 12(4)865-874, 2001.

[Williams 1992] Williams R.J.: Training Recurrent Networks Using the Ex-
tended Kalman Filter, in International Joint Conference on Neural Net-
works, Baltimore, IEEE, pp.241-246, 1992.

