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Abstract

Evolutionary algorithms, a broad class of optimisation algorithms inspired in the process of nat-
ural evolution, are introduced, and an artificial model of evolution is given which encompasses most
established evolutionary algorithm variants. This model is then reinterpreted in the light of multiob-
jective optimisation, and a link to decision analysis is established.

1 Introduction

Nature has been a major source of inspiration and metaphors for scientific and technical development.
It is not difficult to identify the links between the ear and the microphone, the eye and the camera, the
bat and the sonar system, the brain and artificial neural networks, and so forth. Similarly, the process of
natural evolution has inspired a growing amount of research in artificial systems, only made possible by
the increasing availability of modern computing power.

Evolutionary optimisation is a term used to describe a broad class of optimisation algorithms inspired
in the process of natural evolution. Such evolutionary algorithms (EAs) have been applied with vari-
ous degrees of success to many difficult optimisation problems in engineering and operations research,
among several other areas.

Many practical optimisation problems involve, not a single objective, but a number of possibly com-
peting objectives, or criteria. Although different objectives may usually be combined by means of ag-
gregating functions to produce a single cost measure, it is not always easy, or even appropriate, to define
such a function. In the absence of information about the relative importance of individual objectives,
the optimisation problem may still be approached, but will generally admit no unique solution. Rather,
a number of optimal solutions may exist, in the sense that each such solution may be improved with
respect to some criteria only at the expense of degradation in other criteria.

In this paper, evolutionary optimisation is introduced in the more general context of evolutionary
processes, after reviewing some relevant problem solving concepts. Then, an artificial model of evolution
is given which encompasses most established EA variants. Finally, that model is reinterpreted so as to
accommodate multiple criteria, and a link to decision analysis is established.

2 Problem solving

Evolutionary algorithms may be defined as a broad class of computational methods inspired in the pro-
cess of natural evolution, which are aimed at solving difficult problems. Before considering EAs in more



detail, it is worth reviewing some concepts related to problem solving.

2.1 What is a problem?

Definition 1 (Abstract problem) An abstract problem Q is a binary relation on a set I of problem in-
stances and a set S of problem solutions [1].

Considering the Travelling Salesman Problem (TSP) as an example, an instance consists of a set of cities
and of the distances between them. A solution, on the other hand, consists of a sequence of cities, which
describes the order in which they should be visited. Note that this view of a problem is very general, and
that one is often interested in more restricted classes of problems.

Definition 2 (Decision problem) An abstract problem is called a decision problem if it has a yes/no
solution, i.e. S ={0,1} [1].

Definition 3 (Optimisation problem) An abstract problem is called an optimisation problem if it con-
sists of finding minimal or maximal elements [2] of a set S under a given preorder <.

Returning to the previous example, the TSP is an optimisation problem, as it consists of finding a tour of
minimum length. Here, the preorder =< on S, the set of all possible tours, may be defined by referring to
the tour length as a cost function f of each city sequence x € S:

Vxi,xp €S, x1 2 x <:>f(x1) < f(x2)

Note also that, given a TSP, the problem of whether or not a tour exists which is shorter than a given
length (or than a given tour) is a decision problem. One may attempt to solve such a decision problem
by considering a candidate solution to the original optimisation problem, x € S, and verifying whether its
cost f(x) is indeed less than or equal to the given bound. If so, the decision problem is know to have an
affirmative solution. Otherwise, it remains unsolved.

In general, optimisation problems can be recast as decision problems in the way just described.

2.2 Encodings

The difficulty of a problem is inherently related to the time needed to solve it, regardless of its type. One
important issue in discussing problem difficulty is that, to be solved on a computer, an abstract problem
instance must be represented in some way.

Definition 4 (Encoding) An encoding of a set S of abstract objects is a mapping e from S to the set of
binary strings [1].

Definition 5 (Concrete problem) A problem is called a concrete problem if its instance set I is the set
of binary strings [1].

It is important to note that the time taken by a computer to solve a concrete problem my depend heavily
on the underlying encoding. Thus, complexity theory restricts itself to concrete problems, and concrete
decision problems in particular. Although complexity theory will not be discussed further here, one
should realise that if an optimisation problem can be solved quickly, then so can any associated decision
problem. Equivalently, if a decision problem is hard to solve, the related optimisation problem will also
be hard.

As it will be discussed later, encodings may play a very important role in evolutionary optimisation.



2.3 Evolutionary algorithms as approximation algorithms

When a given optimisation problem cannot be solved exactly in an acceptable amount of time, it may
still be possible to find approximate solutions, e.g. by verifying given candidate solutions against the
best solution known to date. Indeed, EAs act as optimisers by

1. generating candidate solutions
2. evaluating them

3. using the information thus gained to generate new, possibly better, candidate solutions

Together with methods such as Tabu Search, Simulated Annealing, Stochastic Local Search, and Ant
Colony Optimisation, among others, EAs integrate a class of approximation techniques which has be-
come known as Metaheuristics.

3 Evolutionary processes

The process of natural evolution has inspired a growing amount of research in artificial systems. The
resulting class of computational methods which simulate various aspects of natural evolution became
known as Evolutionary Algorithms, having attracted interest from biology, chemistry, economics, engin-
eering and mathematics. The area emerged in the late 1960s in Europe [3, 4] and the US [5, 6], motivated
by a desire to advance the state of the art in optimisation, adaptation, and machine learning. It became
popular in the 1990s due, to a great extent, to the publication of Goldberg’s book [7], and has continued
to grow since then.

As an optimisation process, evolution has many interesting features. In particular, individuals are
selected based on how well they function, and not based on the mechanisms which account for their
functionality. Thus, they tolerate a limited understanding of how existing solutions may be improved,
allowing problems previously considered intractable to be approached.

Neo-Darwinism is currently the most widely accepted paradigm of natural evolutionary [8]. Tt is
based on the four essential processes of reproduction, mutation, competition and selection. Reproduction
consists of individuals being capable of generating offspring similar to themselves (either sexually or
asexually), whereas mutation accounts for replication errors during reproduction. Competition arises as
the number of individuals in a population grows in a resource-limited environment, and selection consists
of only certain individuals, through competition, actually being able to reproduce. Since offspring tend
to be similar to their parents, selection effectively shapes populations as they evolve.

3.1 Population

In the neo-Darwinian paradigm, individuals can be understood as a duality. The genetic programme, or
genotype, consists of an encoded representation of the individual at the chromosome level. Individual
traits, on the other hand, are expressed by executing, or decoding, the genotype. Expressed traits are
also called the phenotype, and usually vary as a complex non-linear function of the genotype, and of its
interaction with the environment. In particular, there are usually no one-gene one-trait relationships. A
single gene may simultaneously affect many phenotypic traits (pleiotropy) and a single phenotypic trait
may be affected by the interaction of several genes (polygeny).

In artificial evolutionary systems, however, the encodings used are usually simple and concise, and
seldom implement pleiotropy. Polygeny usually occurs, though, especially due to the lower cardinality
of the alphabets tend to be used to encode the genotype.



3.2 Selection

Individuals are selected based on their expressed traits. Selection determines the survival of the best
individuals and, consequently, their opportunity to generate offspring. Individuals which produce more
offspring are considered fitter than others. Indeed, in natural systems, fitness is expressed: individuals are
fit because they generate offspring. On the contrary, in artificial evolutionary systems, fitness is usually
assigned to individuals based on some criterion, e.g., the cost function which defines an optimisation
problem. This is perhaps one of the fundamental differences between natural evolution and evolutionary
optimisation. The reproductive advantage of the best individual in a population with respect to the
population’s average is known as selective pressure.

Selection may be implemented in several ways. In generational selection, individuals reproduce all
at the same time, and offspring replace the whole of the parent population, never competing with it. This
is akin to the reproductive cycle of some insects, for example, where parents die before offspring are
born. In an alternative model of selection, parents may be selected to reproduce at any time, and the
offspring they generate are inserted in the parent population and forced to compete with it (incremental
selection).

Another aspect of selection is whether it is sfochastic, as it is common in natural systems, or determ-
inistic, as in animal breeding, for example. One interesting property of (stochastic) selection, which can
be observed in Nature as well as on the computer, is known as genetic drift, and consists of the tendency
finite populations exhibit to evolve towards a single type of solution even when equivalent alternatives
exist [9]. On the computer, genetic drift may be controlled in some circumstances by implementing niche
induction mechanisms [10] such as fitness sharing and crowding.

3.3 Heredity
Evolution does not arise out of selection alone. One fundamental aspect of evolution is that individual
replication is not perfect, i.e., individuals are not exactly like their parents but differ from them to a
certain extent. As reproduction occurs at the genotypic level, the basic assumptions are that:

1. Offspring are similar to their parents at the genotypic level (heredity).

2. Good individuals have similar genotypes.
On the computer, as in Nature, heredity may assume several forms:
Mutation Random alteration of only small parts of individual genotypes

Recombination Production of offspring from the genotypic material of two (or possibly more) parents

Learning Incorporation of knowledge acquired at higher levels into the an individual’s representation.
This may be seen as Lamarckian evolution, memetic evolution, or even as “genetic engineering”.

Despite the fact that there can be no evolution without variation, variation must be controlled. The basic
idea is that selection must be able to recover from any deleterious variation. The amount of variation
beyond which evolution no longer occurs is known as the error threshold [11].



Evolutionary Algorithm:
1. Generate initial population (genotypes)
2. While not happy do
(a) decode individuals (phenotypes)

evaluate individuals (cost)

assign reproductive ability (fitness)

)
)
(d) select individuals based on fitness
) produce offspring (genotypes)
)

insert offspring into the population

Figure 1: An artificial model of evolution.

3.4 Viability

Finally, it is not sufficient either for good individuals to produce many offspring, as their offspring must
be fit as well for evolution to successfully occur. Whether or not this is the case depends on the optim-
isation problem itself, on the genotypic encoding and on the variation mechanisms which manipulate it.
Electing a good combination of encoding and variation operators for a given problem continues to be
perhaps the greatest challenge in evolutionary optimiser design.

4 An artificial model of evolution

The various concepts introduced above can now be combined to produce a general artificial model of
evolution, as depicted in Figure 1.

In an evolutionary optimisation setting, the initial population is typically drawn at random from a
suitable encoding of the solution set S. Encodings commonly found in the literature include binary
strings, n-ary strings, permutations, graphs (and especially trees), and combinations of these, depending
on the problem considered.

Individual genotypes are then decoded to yield candidate solutions in (a subset of) the solution space
S. Encodings are usually such that each genotype typically decodes into a unique phenotype, although it
is possible to consider encodings where this is not always the case [12].

4.1 Evaluation and fitness assignment

Once candidate solutions in S have been obtained, individuals are evaluated based on the preorder which
defines the optimisation problem or on a cost function, if one is given. Provided that the preorder =<
is such that all individuals are comparable (i.e., Va,b € S, a = bV b < a), evaluation may consist of no
more than sorting the population and noting individual ranks.[13]). Alternatively, the cost function may
be evaluated at each individual. This is the usual single-objective optimisation case.

Evaluated solutions are then assigned a fitness value. Fitness may be assigned based on rank (rank-
ing [13]) or as a function of cost function values (scaling). Scaling is the more traditional approach. Raw
fitness is calculated as a monotonic function of the cost, offset by a certain amount, and then linearly
scaled. The first difficulty arises at this stage: whilst scaling aims to preserve the relative performance



between different individuals, both the initial transformation and the subsequent offsetting can signific-
antly affect the fitness ultimately assigned to each individual.

With scaling, an individual much stronger than all the others may be assigned a very large fitness
and, through selection, rapidly dominate the population. Conversely, the advantage of the best individual
over the rest of the population will be minimal if most individuals perform more or less equally well, and
the search will degenerate into an aimless walk.

Ranking addresses these difficulties by eliminating any sensitivity to the scale in which the problem
is formulated. Since the best individual in the population is always assigned the same fitness, would-
be “super” individuals can never reproduce excessively. Similarly, when all individuals perform almost
equally well, the best individual is still unequivocally preferred to the rest (but this may be inappropriate
if the objective function is contaminated with noise).

Rank-based fitness assignment is characterised by the choice of rank-to-fitness mapping, which is
usually chosen to be linear or exponential. For a population of size N, ranking the best individual zero
and the worst N — 1, and representing rank by r and fitness by ¢(r), these mappings can be written as
follows:

Linear

o) =5 (s—1):

N-1’

where s, 1 < s <2, is the fitness desired for the best individual. The upper bound on s arises
because fitness must be non-negative for all individuals, while maintaining Zﬁi _01 o0(i) = N.

Exponential

Q)(r):pr-s,

where s > 1 is the fitness desired for the best individual, and p is such that Zﬁ\i Bl p! = N/s. Since
there is no upper-bound on s, the exponential mapping is somewhat more flexible than the linear.

For 1 < s <2, the main difference between linear and exponential rank-based fitness assignment is
that the exponential mapping does not penalise the worst individuals as much, at the expense of assigning
middle individuals fitness slightly less than average. As a consequence, exponential assignment generally
contributes to a more diverse search.

4.2 Selection

A number of parents are selected from the population through a sampling mechanism, which may be
deterministic or stochastic. A well-established sampling procedure is known as Stochastic Universal
Sampling [14], and may be visualised as the result of spinning a roulette wheel with slots proportional
in width to the fitness of the individuals in the population, and with multiple, equally spaced pointers
(Figure 2). Once it stops, the number of pointers over each sector must be an integer, either immediately
above or immediately below the corresponding desired number of offspring, guaranteeing minimum
deviations from the desired fitness value. The replicates obtained in this way should be shuffled before
the algorithm proceeds with recombination.



Figure 2: Stochastic Universal Sampling

4.3 Recombination and mutation

Offspring are produced from the parents selected, by manipulating them at the genotypic level. Parents
may be recombined and/or mutated to generate offspring. A typical recombination operator for binary
and other string chromosomes is single-point crossover, whereby two individuals exchange a portion
(right or left) of their chromosomes to produce offspring, as illustrated in Figure 3. The crossover point
is selected at random. Other recombination operators commonly used with binary strings are:

Double-point crossover Two crossover points are selected instead of one [15].
Uniform crossover Each bit is exchanged independently, with a given probability [16].

Shuffle crossover The chromosomes are shuffled before single-point crossover is applied, and con-
sequently deshuffled [17].

Reduced-surrogate crossover The non-identical bits in the chromosomes are first identified, and one
of the above crossover types applied to the smaller string thus defined [15]. This has the effect of
guaranteeing the production of offspring different from their parents.

As for bit mutation (see Figure 4), it is most commonly implemented by independently flipping each bit
in the chromosome with a given probability.

4.4 Reinsertion

Finally, the offspring produced are inserted in the population, replacing:
e random members of the parental population,
e the oldest members of the parental population,
e their own parents, or
o the least fit members of the parental population.
Actual reinsertion may occur

e unconditionally,
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Figure 3: Single point crossover
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Figure 4: Bit mutation

e only if the offspring are fitter than the individuals they are to replace, or

e probabilistically, depending on whether or not the offspring are stronger than the individuals they
are to replace.

Note that, by denying some individuals the possibility of reproducing further, reinsertion has ultimately
the same effect as selection. The overall selective pressure imposed on the population is not only determ-
ined by the fitness assignment strategy, but is also affected by when and how reinsertion is performed.
In particular, always replacing the least fit individuals in the population strongly increases the effective,
as opposed to assigned, fitness differential between stronger and weaker individuals in the population.
This is because, in addition to being less likely to be selected, weaker individuals tend to die earlier,
thus participating in less selection trials than stronger ones. Reinsertion strategies which guarantee the
preservation of the best individual are known as elitist.

5 Multiobjective optimisation

Practical problems are often characterised by several non-commensurable and often competing measures
of performance, or objectives. The multiobjective optimisation problem may be stated as the problem of
simultaneously minimising the n components f;, i = 1,...,n, of a vector function f(x), with x € S, where

f(x) = (/1) ful))-

The problem usually has no unique, perfect (or Utopian) solution, but may admit a set of non-dominated,
alternative solutions, known as the Pareto-optimal set [18]. Assuming a minimisation problem, domin-
ance is defined as follows:

Definition 6 (Pareto dominance) A real vector w = (uy,...,u,) is said to dominate v = (vi,...,vy,) if
and only if u is partially less than v (w p< v), i.e.,

Vie{l,...,n}, uy;<vi A Fie{l,...;n}: u;<v;.

Definition 7 (Pareto optimality) A solution x, € S is said to be Pareto-optimal if and only if there is no
xy € S for which v = f(x,) = (v1,...,v,) dominates u = f(x,) = (u1,...,u,).
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Figure 5: A general multiobjective evolutionary optimiser.

Pareto-optimal solutions are also called efficient, non-dominated, and non-inferior solutions. The cor-
responding objective vectors are simply called non-dominated. The set of all non-dominated vectors is
known as the non-dominated set, or the trade-off surface, of the problem.

Alternatively, the multiobjective optimisation problem may be defined by specifying the preorder in
Definition 3 as:

Vxi,xp €S, x1 21 @f,-(xl) Sf,(XQ) Vie {1,...,11}.

This greatly simplifies establishing a formulation of multiobjective evolutionary algorithms.

5.1 Multiobjective evolutionary algorithms

Definition 3 is general enough that it accommodates both single and multiobjective optimisation prob-
lems. On the other hand, the artificial model of evolution presented in Figure 1 was based simply on this
definition. It is therefore clear that the main difference between a single-objective and a multiobjective
evolutionary algorithm must lie in the individual evaluation step. In particular, some elements of S may
now be incomparable and assigning a cost value to each candidate solution becomes a decision analysis
problem.

A general multiobjective evolutionary optimiser may also be seen as the result of the interaction
between between a Decision Maker (DM) and an Evolutionary Algorithm (see Figure 5). The EA gen-
erates a new set of candidate solutions according to the cost assigned to the current set of candidates
by the DM. New candidate solutions, as they are evaluated provide new trade-off information which the
DM can use to refine the current preferences. The EA sees the effect of any changes in the decision
process, which may or may not result from taking recently acquired information into account, as an en-
vironmental change. The DM block represents any cost assignment strategy, which may range from that
of an intelligent Decision Maker to a simple aggregating function approach.

Aggregating function approaches to multiobjective evolutionary optimisation, although useful and
very common in the literature, do convert multiobjective optimisation problems into a single-objective
problems, raising no particular issues as far as the EA formulation is concerned. A number of alternative
approaches, known as population-based approaches [19], typically assign different objectives to differ-
ent subsets of the population, so as to promote the emergence of good compromise solutions. Schaffer’s
pioneering work on Vector Evaluated Genetic Algorithms [20] falls in this category. A third class of ap-
proaches is based directly on the definition of Pareto-dominance, and includes most modern evolutionary
multiobjective optimisers.
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Figure 6: Pareto ranking

5.2 Pareto-based approaches

In the absence of information concerning the relative importance of the objectives, an individual can only
be said to perform better than another if it dominates it. Therefore, non-dominated individuals should
be assigned the same cost [7], e.g., zero. Deciding about the cost of dominated individuals is a more
subjective matter. One alternative consists of assigning individuals a cost proportional to how many
other individuals in the population dominate them (Figure 6), which also guarantees that non-dominated
individuals are treated as desired. This is essentially the Pareto-ranking scheme proposed in [21].

Another popular Pareto-ranking scheme [7], also known as non-dominated sorting [22], consists of
removing the non-dominated individuals (still ranked zero, for ease of comparison) from contention,
finding the non-dominated individuals in the remaining population and assigning them rank 1, and so
forth, until the whole population is ranked.

Both approaches guarantee that non-dominated individuals are all ranked best, and that all individuals
are assigned better ranks than those individuals they dominate. However, the first ranking scheme does
appear to be easier to interpret and analyse mathematically [23].

5.3 Incorporating preference information

When goal and/or priority information is available for the objectives, it may become possible to dis-
criminate between some non-dominated solutions. For example, if degradation in objective components
which meet their goals does not go beyond the goal boundaries, and results in the improvement of object-
ive components which do not yet satisfy the corresponding goals, then it should be accepted. Similarly,
in a dual priority setup [23], it is only important to improve on high priority objectives (i.e., constraints)
until the corresponding goals are met, after which improvement should be sought for the remaining
objectives. These considerations have been formalised in terms of a transitive relational operator (prefer-
ability), based on Pareto-dominance, but which selectively excludes objectives according to their priority



and to whether or not they meet their goals.

For simplicity, only one level of priority will be considered here. The full, multiple priority version
of the preferability operator is described in detail in [23]. Consider two objective vectors u and v and a
goal vector g. Also, let the smile £ and the frown = denote the components of u which meet their goals
and those which do not, respectively. Assuming minimisation, one can write

u u

u " <g= A u >g,
where the inequalities apply componentwise. This is equivalent to
Viell/,u,'gg[ A Vl.E/u\,Lt,'>g,'

where u; and g; represent the components of u and g, respectively. Then, u is said to be preferable to v
given g if and only if

u u

(0 p< vV {(uA = V/li) A (v‘u“ £ gi) Y% (u‘u’ p< V\U/)} }

where a p< b denotes a dominates b. In other words, u will be preferable to v if and only if one of the
following is true:

1. The violating components of u dominate the corresponding components of v.

2. The violating components of u are equal to the corresponding components of v, but v violates at
least another goal.

3. The violating components of u are equal to the corresponding components of v, but u dominates v
as a whole.

Like Pareto-dominance, this relation can be used to rank the individuals in a population by one of the
methods described above.

6 Concluding remarks

In this paper, evolutionary optimisation was introduced, and an artificial model of evolution was given
which encompasses most established EA variants. That model was then reinterpreted so as to accom-
modate multiple criteria optimisation problems. In the same light, it was shown how existing preferences
may be combined with the notion of Pareto dominance by defining an alternative relation.

Much more could be said about evolutionary multi-criterion optimisation. Modern evolutionary
multi-criterion optimisers have introduced additional mechanisms in the evolutionary process, includ-
ing niche induction techniques, for maintaining diversity, and solution archiving, for preserving good
solutions in the population. As a result, it has become increasingly less clear which algorithm works
best in general, and increasing attention is being paid to experimental methodology for studying the
performance of multiobjective optimisers.

In the mean time, existing evolutionary multi-criterion optimisers have been used in a wide range
of industrial applications, making this one of the most promising research areas in evolutionary com-
puting. The reader is referred to [24] for a comprehensive text book on Evolutionary Multiobjective
Optimisation, and to [25, 26] for recent developments.



References

(1]
(2]
(3]

(4]

(5]

[6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. MIT Press, 1990.
P. Taylor, Practical Foundations of Mathematics. Cambridge University Press, 1999.

I. Rechenberg, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipen der biologis-
chen Evolution. Stuttgart: frommann-holzboog, 1973. In German.

T. Bidck, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution strategies,” in Genetic Al-
gorithms: Proceedings of the Fourth International Conference (R. K. Belew and L. B. Booker,
eds.), pp- 2-9, San Mateo, California: Morgan Kaufmann, 1991.

D. B. Fogel, System Identification Through Simulated Evolution: A machine learning approach to
modelling. Needham, Massachusetts: Ginn Press, 1991.

J. H. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor: The University of
Michigan Press, 1975.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Reading,
Massachusetts: Addison-Wesley, 1989.

D. B. Fogel, “Principles of evolutionary processes,” in Evolutionary Computation 1: Basic Al-
gorithms and Operators (T. Baeck, D. Fogel, and T. Michalewicz, eds.), ch. 4, pp. 23-26, Institute
of Physics Publishing, 2000.

D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for multimodal function op-
timization,” in Grefenstette [27], pp. 41-49.

K. Deb and D. E. Goldberg, “An investigation of niche and species formation in genetic function
optimization,” in Schaffer [28], pp. 42-50.

G. Ochoa, I. Harvey, and H. Buxton, “Error thresholds and their relation to optimal mutation rates,”
in European Conference on Artificial Life, pp. 54—63, 1999.

R. K. Belew, “Evolution, learning and culture: Computational metaphors for adaptive algorithms,”
Complex Systems, vol. 4, pp. 11-49, 1990.

J. E. Baker, “Adaptive selection methods for genetic algorithms,” in Grefenstette [29], pp. 101-111.

J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,” in Grefenstette [27], pp. 14—
21.

L. Booker, “Improving search in genetic algorithms,” in Genetic Algorithms and Simulated Anneal-
ing (L. Davis, ed.), Research Notes in Artificial Intelligence, ch. 5, pp. 61-73, London: Pitman,
1987.

G. Syswerda, “Uniform crossover in genetic algorithms,” in Schaffer [28], pp. 2-9.

R. A. Caruana, L. J. Eshelman, and J. D. Schaffer, “Representation and hidden bias II: Eliminating
defining length bias in genetic search via shuffle crossover,” in Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence (N. S. Sridharan, ed.), pp. 750-755, Morgan
Kaufmann, 1989.



[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

A. Ben-Tal, “Characterization of Pareto and lexicographic optimal solutions,” in Multiple Criteria
Decision Making Theory and Application (G. Fandel and T. Gal, eds.), vol. 177 of Lecture Notes in
Economics and Mathematical Systems, pp. 1-11, Berlin: Springer-Verlag, 1980.

C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in multiobjective optim-
ization,” Evolutionary Computation, vol. 3, Spring 1995.

J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms,” in
Grefenstette [29], pp. 93-100.

C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization: Formula-
tion, discussion and generalization,” in Genetic Algorithms: Proceedings of the Fifth International
Conference (S. Forrest, ed.), pp. 416-423, San Mateo, CA: Morgan Kaufmann, 1993.

N. Srinivas and K. Deb, “Multiobjective optimization using nondominated sorting in genetic al-
gorithms,” Evolutionary Computation, vol. 2, Fall 1994. To appear.

C. M. Fonseca and P. J. Fleming, “Multiobjective optimization and multiple constraint handling
with evolutionary algorithms I: A unified formulation,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 28, no. 1, pp. 26-37, 1995.

K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, 2001.

E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, eds., Evolutionary Multi-Criterion
Optimization, First International Conference, vol. 1993 of Lecture Notes in Computer Science.
Springer, 2001.

C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, eds., Evolutionary Multi-Criterion
Optimization, Second International Conference, vol. 2632 of Lecture Notes in Computer Science.
Springer, 2003.

J. J. Grefenstette, ed., Genetic Algorithms and Their Applications: Proceedings of the Second In-
ternational Conference on Genetic Algorithms, Lawrence Erlbaum, 1987.

J. D. Schaffer, ed., Proceedings of the Third International Conference on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann, 1989.

J. J. Grefenstette, ed., Genetic Algorithms and Their Applications: Proceedings of the First Inter-
national Conference on Genetic Algorithms, Lawrence Erlbaum, 1985.



