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Abstract. Recursion theory on the reals, the analog counterpart of recursive function theory, is an
approach to continuous-time computation inspired in the models of Classical Physics. In recursion
theory on the reals, the discrete operations of standard recursion theory are replaced by operations
on continuous functions, such as composition and various forms of differential equations as indefinite
integrals, linear differential equations, and more general Cauchy problems. We define classes of
real recursive functions, in a manner similar to the standard recursion theory, and we study their
complexity. We consider, namely, the structural and the computational complexity of those classes.
As a result, we prove both upper and lower bounds for several classes of real recursive functions,
which lie inside the primitive recursive functions and, therefore, can be characterized in terms of
standard computational complexity.
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1 Introduction

Recursive function theory provides the standard notion of computable function [Cut80,0di89]. Moreover,
many time and space complexity classes have recursive characterizations [Clo99]. As far as we know,
Moore [Mo0096] was the first to extend recursion theory to real valued functions. We will explore this
and show that all main concepts in recursion theory like basic functions, operators, function algebras,
or functionals, are indeed extendable in a natural way to real valued functions. In this paper, we define
recursive classes of real valued functions analogously to the classical approach in recursion theory and we
study the complexity of those classes. In recursion theory over the reals, the operations typically include
composition of functions, and solutions of several forms of differential equations. On one hand, we look
at the structural properties of various algebras of real functions, i.e., we explore intrinsic properties of
classes of real recursive functions such as closure under iteration, bounded sums or bounded products.
We investigate links between analytical and computational properties of real recursive functions. For
instance, we show that a departure from analyticity to C'*° gives closure under iteration, a fundamental
property of discrete functions. On the other hand, we use standard computational complexity theory
to establish upper and lower bounds on those algebras. We establish connections between subclasses
of real recursive functions, which range from the functions computable in linear space to the primitive
recursive functions, and subclasses of the recursive functions closed under various forms of integration.
We consider, in particular, indefinite integrals, linear differential equations, and more general Cauchy
problems. Finally, we describe some directions of work that suggest that the theory of real recursive
functions might be fruitful in addressing open problems in computational complexity.

* A similar version of this paper was presented at UMC’02 [Cam02]. This paper describes join work with Félix
Costa (I.S.T./Universidade Técnica de Lisboa) and Cris Moore (Santa Fe Institute and University of New
Mexico).



2 Recursive functions over R

Moore [M0096] proposed a theory of recursive functions on the reals, which is defined in analogy with
classical recursion theory. A function algebra

[Bl,BQ, ceey 01,02, ],

which we also call a computational class, is the smallest set containing basic functions {Bi, Bz, ...} and
closed under certain operations {O1, Os, ...}, which take one or more functions in the class and create
new ones.

Although function algebras have been defined in the context of recursion theory on the integers, they
are equally suitable to define classes of real valued recursive functions. As a matter of fact, if the basic
functions in a function algebra are real functions and the operators map real functions into real functions,
then the function algebra is a set of real functions. Furthermore, if the basic functions have a certain
property (e.g. continuity or differentiability) which is preserved by the operators, then every function in
the class will have that same property on its domain of definition. In recursion theory on the reals we
consider operations such as the following.

COMP (Composition). Given functions fi,..., f, of arity n and g of arity p, then define h such that
h(z) = g(f1(@), ..., fp(@))-

| (S-integration). Given functions fi,..., fn of arity n, and g1, ..., gm of arity n + 1 + m, if there is a
unique set of functions hg,..., hy, such that

h(z,0) = £ (), "
6yh(m7y) = g(m7y7h(m7y))7 Vy € I- Sa

on an interval I containing 0, where S C I is a countable set of isolated points, and h is continuous
for all y € I, then h = h; is defined.

p (Zero-finding). Given f of arity n + 1, then define h such that

_ gef [y~ =sup{y € Ry : f(zx,y) =0}, if —y~ <yt
he) = mf@y) = {y+ =inf{y € R} : f(x,y) =0}, if —y~ >yt

whenever it is well-defined.

To match the definition in [M0096], derivatives of functions can have singularities (we denote the set
of singularities by S). The definition above allows the derivative of h to be undefined on the singularities,
as long as the solution is unique and continuous on the whole domain. To illustrate the definition of the
operator [, let’s look at the following example.

Ezample 1. (,/) Suppose that the constant 1 and the function g(y,z) = 1/2z are defined. Then, the
solution of

1
6yh—%

is defined on I = [—1,1]. Indeed, the function h(y) = \/y + 1 is the unique solution of Equation (2) on
[—1,1]. The set of singularities is S = {—1}, so d,h(y) doesn’t have to be defined on y = —1.

and h(0) =1. (2)

Clearly, the operations above are intended as a continuous analog of operators in classical recursion
theory, replacing primitive recursion and zero-finding on N with S-integration and zero-finding on R.
Composition is a suitable operation for real valued functions and it is therefore unchanged. Then, the
class of real recursive functions is defined in [M0096] as:

Definition 1. The real recursive functions are [0,1,U; COMP, [, ],



where 0 and 1 are simply constant functions, and U denotes the set of projections U*(z1,...,%,) = ;.
We also define real recursive constants as:

Definition 2. A constant a is said to be computable if there is an unary real recursive function f such
that f(0) = a.

Then, if a constant a is computable, then one can also define, with composition and zero, a constant
unary function g as g(x) = f(0(z)) = a, for all . As we will see below, some irrational constants like e
or 7 are real recursive, and therefore we can define a function whose value is precisely e or 7. This is in
contrast to the definition of real numbers computable by Turing machines, where an irrational number
is said to be computable if there is a sequence of rationals that converge to it effectively.

If p is not used at all we get My, the “primitive real recursive functions”, i.e., [0,1,—1,U; COMP, [].
These include the differentially algebraic functions, as well as constants such as e and w. However, My
also includes functions with discontinuous derivatives like |z| = v/z2.

To prevent discontinuous derivatives, and to make our model more physically realistic, we may require
that functions defined by integration only be defined on the largest interval containing 0 on which their
derivatives are continuous. This corresponds to the physical requirement of bounded energy in an analog
device. We define this in a manner similar to S-integration, but with the additional requirement of the
continuity of the derivative:

I (SC'-integration). Given functions fi,..., fm of arity n, and gi, ..., gm of arity n + 1 4+ m, if there is
a unique set of functions hq, ..., hy, such that

h(z,0) = f(), -
ayh($7y) = g(ﬂ:,y,h(ﬂ:,y)), Vy €l— Sa

on an interval I containing 0, where S C I is a countable set of isolated points, and h and 9,h are
both continuous for all y € I , then h = hy is defined.

Then, restricting [ to I, we define the class [0,1 — 1,U; COMP,I]. It is clear that all functions in
[0,1 —1,U; COMP,T] are continuously differentiable on their domains. (A question that arises naturally
is if they are of class C®.) Therefore, f(y) = +/y + 1 mentioned in Example 1 cannot be defined on the
interval [~1,1] in D anymore, since its derivative is not continuous on that interval.

Ezample 2. (6,) In D we can define a non-analytic function 6, such that 6.,(t) = exp(—1/t), when
t >0, and 6 (t) = 0, when ¢ < 0. First consider the unique solution of the initial condition problem

2= ﬁz and 2(0) = exp(—1) (4)

with a singularity at ¢ = —1. This is 2(t) = 0 if ¢ < -1, and 2(¢t) = exp(—t%) if z > —1. Then
0o (t) = 2(t — 1). The function 6, can be though as a C* version of the Heaviside function 6, defined
by 8(z) = 0 when z < 0 and 6(z) = 1 when z > 0.

We can restrict the integration operation even more, if we don’t allow singularities for the derivatives in
the domain of existence of the solution. Formally, we say that a functions is defined by proper integration
if it is defined with the following operator:

I (Proper integration). Given functions fi,..., fi, of arity n, and g¢1,...,gm of arity n + 1+ m, if there
is a unique set of continuous functions h, ..., hy, such that

h(z,0) = f(z), 5)
oyh(z,y) = g(x,y,h(x,y)), Vyel,

on an interval I containing 0, then h = h; is defined.



This proper form of integration preserves analyticity [Arn96]. Moreover, if the functions fi,..., fm
and g1,...,gm are of class C*, then h is also of class C* on its domain of existence (cf. [Har82, 5.4.1]).
Since constants and projections are analytic and composition and integration preserve analyticity, then:

Proposition 1. All functions in [0,1,—1,U; COMP,I] are analytic on their domains.

Similarly, one proves that functions of one variable in [0,1, —1,U; COMP, I] are precisely the differen-
tially algebraic functions [M0096,GC]. This means that the Gamma function, for instance, is not in the
class [0,1,—1,U; COMP,I]. Next, we give some examples of functions that do belong to that class.

Proposition 2. The functions +, —, x, exp, expl™, defined as expl®(z) = 1 and exp"t(z) =
exp(expl™(x)) for any integer n, sin, cos, 1/z, log, and arctan belong to [0,1,—1,U; COMP,I].

To further explore the theory of real recursive functions, we restrict the integration operator to solving
time-varying linear differential equations, i.e.,

LI Linear integration. Given f1,..., fn of arity n and g11, . - ., gmm Of arity n+1, then define the function
h = hy of arity n+1, where h = (hy, ..., hy,) satisfies the equations h(z,0) = f(x) and 9yh(z,y) =
g(z,y)h(z,y).

As in classical recursion theory, we define new classes by restricting some operations but adding to
the class certain basic functions which are needed for technical reasons. A typical example is the integer
function called cut-off subtraction, defined by zt—y =z — y if z > y, and x =y = 0 otherwise. In some
real recursive classes we include, instead, a basic function we denote by 6) and is defined by 6x(z) = 0
if z <0, and 0 (x) = 2* if 2 > 0. Clearly, 6 is an extension to the reals of the Heaviside function, and
6, () is an extension to the reals of z 0. In general, 8, is of class C*¥~1.

For example, we explore the class [0,1,—1, 7,0, U; COMP, LI] for some fixed k. Since, unlike solving
more general differential equations, linear integration can only produce total functions, then:

Proposition 3. For any integer k > 0, if f € [0,1,—1, 7,0, U; COMP,LI], then f is defined everywhere
and belongs to class C*~1.

We will also consider an even more restricted form of integration, which is just the indefinite integral.
Formally, this is defined by:

INT Indefinite integral. Given fi,..., f,, of arity n and gy, ..., gn of arity n+ 1, then define the function
h = hy of arity n+ 1, where h = (hq,. .., hy,) satisfies the equations h(z,0) = f(x) and dyh(x,y) =
g(z,y).

3 Structural complexity

In this section, we ask questions about intrinsic properties of classes of real recursive functions such
as closure under certain operations. We will see that some intriguing connections exist among closure
properties and analytical properties of the classes we consider.

Closure under iteration is a basic operation in recursion theory. If a function f is computable, so is
F(x,t) = fl)(z), the t’th iterate of f on 2. We ask whether these analog classes are closed under iteration,
in the sense that if f is in the class, then so is some F(z,t) that equals fI¥(z) when ¢ is restricted to the
natural numbers.!

Proposition 4. [0,1,—1,U; COMP,T] is closed under iteration.

! In [CMC00] we answer this question for Shannon’s General Purpose Analog Computer. For connections between
real recursion theory and Shannon’s model see [GC].



Proof. (Sketch) Let’s denote [0,1,—1,U; COMP,I] bu D. Given f, we can define in D the differential
equation
(Boo (cOsTE) + 000 (— cosTt)) Bpyr = —(y1 — f(y2)) Boo (sin 2mrt)

(0o (sint) + Ooo(— sinmt)) Opy2 = —(y2 — Y1) oo (— sin 27t)

with initial condition y (z,0) = ya2(z,0) = z, where 6, is the function defined in Example 2. We claim
that the solution satisfies y1 (z,t) = fl!l(z), for all integer ¢ > 0. On the interval [0, 3], y4(z,t) = 0 because
0o (—sin 27t) = 0. Therefore, y» remains constant with value z, and f(y2) = f(z). The solution for y;
on [0, 1] is then given by

(6)

exp(sin(127rt) - COS](-TI't)) y1 = —(n — f(2)),

which we rewrite as ey = —(y1 — f(z)). Note that ¢ = 0" when ¢ — 1/2. Integrating the equation above
we obtain

= £(@) = exp(—+1),

where the right hand side goes to 0 when ¢ approaches 1/2. Therefore, y;(z,1/2) = f(z). A similar
argument for y, on [%, 1] shows that y2(x,1) = y1(z,1) = f(z), and so on for y; and y, on subsequent
intervals. The set of singularities of Equation (6) is {n/2,n € N}. O

However, if we replace SC'-integration by proper integration, which preserves analyticity, then the
resulting class is no longer closed under iteration. More precisely,

Proposition 5. [0,1,—1,U; COMP,1] is not closed under iteration.

Proof. (Sketch) We denote [0,1,—1,U; COMP,I] by D. Let’s suppose that D is closed under iteration.
Since exp € D, then there is a function F in D such that F(x,t) = expl!(x) for all t € N and all z € R.
Therefore, F' has a finite description in D with a certain fixed number of uses of the I operation. However,
it is known that functions of one variable in D are differentially algebraic [Mo096], that is, they satisfy a
polynomial differential equation of finite order. So, for any fixed ¢, F' is differentially algebraic in x. But,
from a result of Babakhanian [Bab73], we know that expl!l satisfies no non-trivial polynomial differential
equation of order less than ¢. This means that the number of integrations that are necessary to define
exp!®! has to grow with ¢, which creates a contradiction. O

Since [0, 1, —1, U; COMP, I] contains non-analytic functions while all functions in [0, 1, —1,U; COMP, I
are analytic, one could ask if there is a connexion between those two structural properties of real recursive
classes. We believe that closure under iteration and analyticity are related in the following sense:

Conjecture 1. Any non trivial real recursive class which is closed under iteration must contain non-
analytic functions.

As a matter of fact, even if it is known that the transition function of a Turing machine can be
encapsulated in an analytic function [KM99,M0098], no analytic form of an iteration function is known.

Next we consider restricted operations as bounded sums and bounded products and we ask which real
recursive classes are closed under those operations. We say that an analog class is closed under bounded
sums (resp. products) if given any f in the class, there is some g also in the class that equals ), _, f(x,n)
(resp. [I,,«; f(x,n)) when t is restricted to the natural numbers.

Let’s see how to define bounded sums in a real recursive class. Not surprisingly, we find that this is
related to indefinite integrals. We first define a step function F' which matches f on the integers, and
whose values are constant on the interval [j,j + 1/2] for integer j. F' can be defined as F(t) = f(s(t)),
where s is a continuous step function that matches the identity over the integers. This can be defined with
the indefinite integral s(0) = 0 and s'(z) = cx0x(— sin 27z).2 Then s(t) = j, and F(t) = f(s(t)) = f(4),
whenever ¢ € [j,j + 1/2] for integer j. The bounded sum of f is then given by g, such that ¢(0) = 0 and
g'(t) = cx F(t) Ox (sin 27t). Then g(t) = >, _,, f(2) whenever t € [n—1,n—1/2]. So, we can define bounded
sums with the constant 7, a periodic function like sin, 6, and the operation of indefinite integrals. More
precisely,

2 The constant ¢y, is a rational or a rational multiplied by 7.



Proposition 6. For all k € N, [0,1, -1, 7,0, sin, U; COMP,INT] is closed under bounded sums. More-
over, any real recursive class which is closed under composition and indefinite integrals and contains the
functions 0,1, —1,7,0,sin, U is closed under bounded sums.

If a class is closed under bounded products and it contains, for instance, the identity function, then it
has to contain functions that grow faster than polynomials. For instance, the class
[0,1,—1,7,8,sin,U; COMP,INT] cannot be closed under bounded products. What can we say if the
analog class is closed under linear integration, instead of just indefinite integrals? We conjecture that the
answer is still negative, since we believe that the simulation of bounded products would have to rely on a
technique similar to Proposition 4 using synchronized clock functions, although we have no proof of this.

Let’s then consider the following weaker property. We say that a class is closed under bounded products
in a weak sense if, given any f in the class which has integer values for integer arguments (i.e., f is an
extension to the reals of some f : RxN — N), there is a g in the class such that g(z,t) = [1,<; f(z,n) when
t is restricted to the natural numbers. Then, in the presence of some appropriate non-analytic function
like Oy, proper integration and even linear integration are sufficient to simulate bounded products. In
particular,

Proposition 7. For all k € N, [0,1,—1,m, 6, U; COMP, LI] is closed under bounded products in a weak
sense.

Proof. (Sketch) Let f be a function on N and g be a the function on N defined from f by bounded product.
We show that if f has an extension to the reals in [0,1,—1,m, 8, U; COMP, LI] then g does also. First,
set gn =1 j<n f;j- We can approximate the iteration g;11 = g; f; using synchronized clock functions as
in proof of Proposition 4. However, since we only allow linear integration, the simulated functions cannot
coincide exactly with the bounded product. Nevertheless, we can define a sufficiently close approximation
because f and g have bounded growth (we can show that any function in [0,1,—1, 7,0, U; COMP, L]] is
bounded by the iterated exponential exp™ for some m).
Let’s define a two-component function y(7,t) where y;(7,0) = y2(7,0) =1,

Oy = (Y2 F'(t) — y1) cx bk (sin 27t) B(7) (7)
Ory2 = (y1 — y2) ckbx (= sin 2mt) B(7)

B(7) is an increasing function of 7, F' is defined as f o s as in the proof of Proposition 6. We can
show that if 8 grows fast enough (roughly as fast as exp!”™), then by setting 7 = n we can make the
approximation error |y (n,n) — gn| as small as we like. Since g has integer values, the accumulated error
on [0, n] resulting from this approximation can be removed with a suitable continuous step function that
matches the identity over integers. Note that the Equation (7) is linear in y; and ys.

We illustrate this construction in Figure 1. We approximate the bounded product of the identity
function, i.e. the factorial (n — 1)! = [],_,, j. We numerically integrated Equation (7) using a standard
package.

We can also show that a class is closed under the iteration of extensions to the reals of integer valued
functions, as long as it is closed under proper integration, and it contains the non-analytic function 6j, or
0. We call this property closure under iteration in a weak sense. For instance, it can be shown, using a
technique similar to [Bra95], that

Proposition 8. [0,1,—1,0.,U; COMP,I] is closed under iteration in a weak sense.

4 Computational complexity

In this section we explore connections among real recursive classes and standard recursive classes. Since
we are interested in classes below the primitive recursive functions, we can characterize them in terms
of standard space or time complexity, and consider the Turing machine as the underlying computational
model. This approach differs from others, namely BSS-machines [BSS89] or information-based complexity
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Fig.1. A numerical integration of Equation (7), where f is a £ function such that f(0) = 1 and f(z) = z for
x > 1. Here, kK = 2. We obtain an approximation of an extension to the reals of the factorial function. In this
example, where we chose a small 7 < 4, the approximation is just sufficient to remove the error with ¢ and obtain

exactly [[,.5n = 4! = ¢(y:1(5))-

[TW98], since it focus on effective computability and complexity. There are two main reasons to this.
First, the Turing machine model allows us to represent the concept of Cauchy sequences and, therefore,
supports a very natural theory of computable analysis. Second, we aim to use the theory of real recursive
functions to address problems in standard computational complexity. This would be difficult to achieve
with an intrinsically analog theory like the BSS-machines over R.

To compare the computational complexity of real recursive classes and standard recursive classes we
have to set some conventions. On one hand, we follow a straightforward approach to associate a class of
integer functions to a real recursive class. We simply consider the discretization of a real recursive class,
i.e., the subset of functions with integer values for integer arguments. More precisely,

Definition 3. Given a real recursive class C, Jn(C) = {f : N* — N s.t. f has an extension to the reals
in C}.

If Fn(C) contains a certain complexity class C’, this means that C has at least the computational power
of C', i.e., we can consider C' as a lower bound for C.

On the other hand, we consider the computational complexity of real functions. We use the notion
of [Ko91], which is equivalent to the one proposed by Grzegorczyk [Grz55], and whose underlying com-
putational model is the function-oracle Turing machine. Intuitively, the time (resp. space) complexity of
f is the number of moves (resp. the amount of tape) required by a function-oracle Turing machine to
approximate the value of f(z) within an error bound 27", as a function of the input z and the precision
of the approximation n.

Let’s briefly recall what a function-oracle Turing machine is (we give an informal description: details
can be found in [HU79,K091]). For any z in the domain of f, the oracle is a computable sequence ¢ such
that for all n € N, |¢(n) — x| < 27™. The machine is a Turing machine equiped with an additional query
tape, and two additional states. When the machine enters in the query state, it replaces the current string
s in the query tape by the string ¢(s), where ¢ is the oracle, moves the head to the first cell of the query
tape, and switches to the answer state. This is done in one step of the computation. We say that the
time (resp. space) complexity of f on its domain is bounded by a function b if there is a function-oracle
Turing machine which, for any x in the domain of f and an oracle ¢ that converges to x, computes an
approximation of f(x) with precision 27" in a number of steps (resp. amount of tape) bounded by b(z,n).
Then, for space complexity we define:

Definition 4. Given a set of functions S, JTRSPACE(S) = {f : R* — R s.t. the space complexity of f is
bounded by some function in S}.

Therefore, if a real recursive class C is contained in JRSPACE(S), then S can be considered a space
complexity upper bound for C.



Suppose that a function f can be successively approximated within an error 27" in a certain amount
of space. Then, if f is integer, it just has to be approximated to an error less than 1/2 to know its value
exactly. Therefore, if a real recursive class C is computable in space bounded in S, then the discretization
of C is also computable in space bounded in S. Formally,

Proposition 9. Let C be a real recursive class. If C C JRSPACE(S), then Fn(C) C FSPACE(S).

Given the two conventions established in Definition 3 and Definition 4, we will show upper and lower
bounds on some real recursive classes. We can use the closure properties described in the last section
to compare discretizations of real recursive classes with standard recursive classes. For instance, since
[0,1,—1,U; COMP, ] contains extensions of the zero function, successor, projections, and the cut-off
function, and is closed under and composition and iteration, then we have the following upper bound for
the primitive recursive functions (see [CMCO00]):

Proposition 10. PR C 7([0,1,-1,U; COMP,TI]).

Note that the same inductive proof works for [0,1,—1,6;,U; COMP,I]. Therefore,
PR C F([0,1,—1,8;, U; COMP, T)).

The elementary functions &£, which are closed under bounded sums and products, are a well-known
class in recursion theory. All elementary functions are computable in elementary time or space, i.e., in
time or space bounded by a tower of exponentials. As a matter of fact, the elementary functions are the
smallest known class closed under time or space complexity [Odi00]. From Propositions 6 and 7 it follows
that

Proposition 11. For all k > 0, £ C In([0,1,-1,6;,U; COMP, LI)).

In addition, all functions in [0,1,—1,6,U; COMP,LI] are computable in elementary space (or time)
[CMCO02]. Formally,

Proposition 12. For all k > 1, [0,1,-1,6;,U; COMP, LI] C 7R SPACE(E).
Combining this with Proposition 9 and Proposition 11, we conclude that:
Proposition 13. For all k > 1, £ = In([0,1, —1,6;, U; COMP, LI)).

which gives an analog characterization of the elementary functions. It is interesting that linear integration
alone gives extensions to the reals of all elementary functions, since these are all the functions that can
be computed by any practically conceivable digital device. Notice that the above results on £ can be
generalized to the levels £ = £3, £4, ... of the Grzegorczyk hierarchy if we include in our model a non
linear differential operator that generates total functions [CMC02].

In recursion theory, several forms of bounded recursion are widely used, namely to obtain charac-
terization of low complexity classes [Clo99]. In bounded recursion, an a priori bound is imposed on the
function to be defined with the recursion scheme. Similarly, we can consider the following operator on
real functions:

BI (Bounded integration). Given functions fi,..., fm of arity n, g1,...,gm of arity n + 1 4+ m, and b
of arity n + 1, if (h1,...,hn) is the unique function that satisfies the equations h(z,y) = f(z),
dyh(z,y) = g(z,y, h(z,y)), and ||h(z,y)|| < b(z,y) on R*! then h = hy of arity n + 1 is defined.

Let’s consider the class [0,1,—1, 6y, x,U; COMP, BI].> All its functions are defined everywhere since
this is true for the basic functions and its operators preserve that property. The a priori bound on the
integration operation strongly restricts this class. All functions in the class [0,1, —1, 6, x, U; COMP, BI]
and its derivatives (for k > 1) are bounded by polynomials. Moreover, all functions computable in linear
space have extensions in that class:

3 Given an appropriate bound, the binary product h(z,y) = xy could be easily defined with bounded integration:
h(z,0) = 0, and 8,h(x,y) = Ui(z,y) = x. However, no other basic function grows as fast as the binary product,
so this needs to be included explicitly in the class.



Proposition 14. For all k > 0, FLINSPACE C A([0,1,—1, 6k, x,U; COMP, BI)).

Proof. (Sketch) Let’s denote [0,1,—1, 84, x,U; COMP, BI] by By. Ritchie [Rit63] proved that the set of
integer functions computable in linear space is the function algebra [0, S, U, x; COMP, BREC], usually
denoted by £2, where BREC is bounded recursion. It is easy to verify that By contains extensions to
the reals of zero, successor, projections, and binary product. Since By is closed under composition, we
just have to verify that By is closed under bounded recursion in a weak sense. But since all functions
in By have polynomials bounds, then this can be done with techniques similar to [Bra95] using bounded
integration instead of integration. Details can be found in [Cam01]. O

The Ritchie hierarchy [Rit63] is one of the first attempts to classify recursive functions in terms
of computational complexity. The Ritchie classes, which range from FLINSPACE to the elementary
functions, are the sets of functions computable in space bounded by a tower of exponentials of fixed height.
Next we describe a hierarchy of real recursive classes where the first level is [0,1, —1, 6y, x, U; COMP, BI]
(see above), and the n-th level is defined by allowing n nested applications of the linear integration
operator. In each level of the hierarchy, indefinite integrals are freely used. As in the Ritchie hierarchy,
composition is restricted. In [Rit63], the arguments of each recursive function are of two possible types:
free and multiplicative. If f is multiplicative in the argument z, then f grows at most polynomially with
z. The restricted form of composition forbids composition on two free arguments. For instance, if 2% +y
is free in z and multiplicative in y, then the composition z = 2% + y with z(t) = 2¢, which is free in t, is
not allowed while the composition z = 2% + y with y(t) = 2! is. We denote this restricted composition by
RCOMP and define the following hierarchy of real recursive classes (see [Cam01] for details):

Definition 5. (The hierarchy S,) For all n > 0, S, = [Bo;RCOMP,INT,n - LI|, where
Bo = [0,1,—1,04, x,U; COMP, BI| for any fized integer k > 2, and where the notation n - LI means
that the operator LI can be nested up to n times.

A few remarks are in order. First, all the arguments of a function A defined with linear integration,
from any functions f, g of appropriate arities, are free. For instance, we are not allowed to compose the
exponential function with itself, since its argument is free. Second, since solutions of linear differential
equations y'(t) = g(t)y(t) are always bounded by an exponential in g and ¢, and at most n nested
applications of linear integration are allowed, then all functions in S,, have bounds of the form exp!™ (p(z)),
where p is a polynomial. Even if the composition exp(exp(z)) is not permitted, towers of exponentials
expl™l = expo...oexp can be defined in Sy:

Ezample 3. (exp™op € S,). Let u;(x,y) = expld(p(x,y)) for i = 1,...,n, where p is a polynomial.
Then, the functions u; are defined by the set of linear differential equations

Oyu1 = u1 - Oyp OyUun = Up * Up—1 UL - Oyp

with appropriate initial conditions. Thus wu,, can be defined with up to n nested applications of LI and,
therefore, expl™ op € S,,.

Next we relate the S, hierarchy to the exponential space hierarchy (details of the proofs can be found
in [CamO01]). Consider the following set of bounding functions:

2 = {by, : N = Ns.t. k> 0,bg(m) = 2 (km) for all m}.
On one hand, S,, has the following upper bound:
Proposition 15. For alln >0, S, C FrSPACE(2["+1]),

Proof. (Sketch) All functions in S,,, and its first and second derivatives, are bounded by 2[" op, where p is
some polynomial. This follows from the fact that all basic functions in S,, have such property (this is why
we restrict k in the Definition 5) and the operators of S,, preserve it. Then, using numerical techniques



we show how to approximate a function defined by composition or bounded integration in Sy = Byp.
Given the bounds on the functions in Sy and their first derivative, composition can be computed in
a straightforward manner, without increasing the space bounds. The major difficulty has to do with
integration. We have to use an exponential amount of space to achieve a sufficiently good approximation.
In fact, the standard techniques for numerical integration (Euler’s method) require a number of steps
which is exponential in the bounds on the derivatives of the functions we want to approximate [Hen62].
Since the bounds for functions in Sy are polynomial, the required number of steps N in the numerical
integration is exponential. Thus all functions in Sy can be approximated in exponential space. Finally,
we follow the same approach for other levels of the S, hierarchy, where restricted composition replaces
composition, and linear integration replaces bounded integration. ad

On the other hand, all functions computable in space bounded by 2[»=1] have extensions in S,,. Formally,
Proposition 16. For all n > 1, FSPACE(2[*~1) C Ay (S,)-

Proof. (Sketch) As in [Rit63], we show that FSPACE(2("1]) has a recursive definition, using restricted
composition and a restricted form of bounded recursion. The following step is to define this restricted form
of bounded recursion with bounded sums. Let’s suppose that f € FSPACE(2[*~1) is defined by bounded
recursion. Then, we can encode the finite sequence {f(1),..., f(n)} as an integer (using for instance prime
factorization), and replace bounded recursion by a bounded quantification over those encodings.* We use
the fact that bounded quantifiers can be defined with bounded sums and cut-off subtraction. However,
the bound on the encoding of the sequence {f(1),..., f(n)} is exponential on the bound on f. Therefore,
we need an additional level of exponentials to replace bounded recursion by bounded sums. Finally, we
know from Proposition 6 that S, is closed under bounded sums, and contains cut-off subtraction as well.

O

Unfortunately, we were not able to eliminate bounded integration from the definition of By, neither
were we able to show that FSPACE(2[™) is precisely F(S,). We believe those issues are related with
the open problem:

crie?
where £? = [0,5,U, ~; COMP,BSUM] is defined with bounded sums and is known as Skolem’s lower
elementary functions.® We consider instead the following problem:

F4([0,1, =1, 8%, +, U; COMP, INT]) = ([0, 1, — 1,6, x, U; COMP, BI]).

At first sight, it seems that the equality above is false, since bounded integration is more general than
indefinite integrals. However, the problem only concerns the discretizations of the analog classes. One
could try to use results of the theory of differential equations to show directly that bounded integration
is reducible, up to a certain error, to a finite sequence of indefinite integrals. It is known that solutions of
general differential equations, y'(t) = f(¢,y) and y(0) = yo, can be uniformly approximated by sequences
of integrals, given some broad conditions that guarantee existence and uniqueness [Arn96,Har82]. How-
ever, that result, which is based on Picard’s successive approximations, requires a sequence of integrals
whose length increases with ¢. Since all functions in [0,1, —1, 8%, x, U; COMP, BI] and its derivatives are
polynomially bounded, it might be possible to find a finite approximation for bounded integration, which
would be sufficient to approximate functions which range on the integers. Notice that the standard nu-
merical techniques (Euler’s method) to approximate the solution of y'(t) = f(t,y) and y(0) = yo require
a number of approximation steps which are exponential in the bounds on the derivative, while Picard’s
method only needs a polynomially long sequence of indefinite integrals, if the bounds on the derivatives
are polynomial.

If the equality above is true, and if Fy([0,1,—1,6y,+,U; COMP,INT])CL?, then we would obtain a
chain of inclusions that would show that £2 = £2. These remarks above establish a connection between
the theory of real recursive functions and computational complexity that would be interesting to explore.

* We follow a known technique in recursion theory (see [Ros84]).
5 Recall that £2 = [0, S, U, x; COMP, BREC] and is precisely FLINSPACE. Notice that £> C £2.



5 Final remarks

We described some results on real recursive functions and we listed some open problems and directions for
further research. We believe that recursion theory over the reals is not only an interesting area of research
by itself, but it is also related to other areas such as computational complexity, numerical analysis or
dynamical systems.

We mentioned possible links to computational complexity in the last section. It would be interesting
to look at real recursive classes related to low time complexity classes. For instance, it is unlikely that the
class in Proposition 6 is contained in FR TIME(P), where P is the set of polynomials, since if 7R TIME(P)
is closed under INT, then #P = FPTIME [Ko091]. Therefore, schemes of integration other than the ones
we described in this paper have to be explored to find analogues to FPTIME or other low time complexity
classes.

We would like to clarify the connections between real recursive functions and dynamical systems.
It is known that the unary functions in [0,1,—1,U; COMP,I] are precisely the solutions of equations
y' = p(y, x), where p is a polynomial [GC]. We conjecture that [0,1,—1,U; COMP, LI] corresponds to the
family of dynamical systems y' = f(y,x), where each f; is linear and depends at most on z,y1,. .., ¥;-
Given such canonical representations of classes of real recursive functions, one could investigate their
dynamical properties.
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