GEO0009 - Midpoint of a Parallelogram The Database contents GEO0007 - Midpoint Theorem GEO0008 -- Orthocenter Theorem

GEO0008 -- Orthocenter Theorem

The Theorem Statement [CGZ93]

Theorem. [Orthocenter Theorem] Given a triangle ABC, the three altitudes are concurrent in a point H.

The Image - GCLC 5.0

Prover's Code

dim 100 100

point A 10 10
point B 50 10
point C 40 70

line a B C
line b A C
line c B A

perp hA A a
perp hB B b

intersec H hA hB

drawsegment A B
drawsegment A C
drawsegment B C

drawline A H
drawline B H

cmark_lt A
cmark_rt B
cmark_lt C

cmark_rt H

drawdashline C H

prove { equal { pythagoras_difference3 A C H  } { pythagoras_difference3 B C H } }
Proved -- Proof, made with GCLC, v1.0

proofGEO0008.pdf
Pedro Quaresma and Predrag Janicic

 GEO0009 - Midpoint of a Parallelogram The Database contents GEO0007 - Midpoint Theorem GEO0008 -- Orthocenter Theorem