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Abstract. The axiomatic presentation of geometry fills the gap between
formal logic and our spatial intuition. The study of geometry is, and will
always be, very important for a mathematical practitioner. GCLCprover,
an automatic theorem prover (ATP) integrated with dynamic geometry
software (DGS) gives its user a tool to bridge his/her spatial intuition
with formal, Euclidean geometry proofs. GeoThms, a system consisting
of the mentioned programs and a database geoDB, provides a frame-
work for exploring geometrical knowledge. A GeoThms user can browse
through a list of available geometric problems, their statements, illustra-
tions, and proofs. He/she can also interactively produce new geometrical
constructions, theorems, and proofs and add new results to the exist-
ing ones. GeoThms framework provides an environment suitable for new
ways of studying and teaching geometry at different levels. GeoThms
also provides a system for storing mathematical knowledge (in a ex-
plicit, declarative form) — not only theorem statements, but also their
(automatically generated) proofs and corresponding illustrations.

1 Introduction

The axiomatic presentation of geometry fills the gap between formal logic and
our spatial intuition. The study of geometry is, and will always be, very im-
portant for a mathematical practitioner. Geometry and geometrical proofs al-
ways were, and still are, exemplary mathematical contents. In history they often
served for guiding development of foundations of mathematics, and today they
serve in mathematical education, aimed at acquiring mathematical rigour. Com-
puter technologies give new ways for dealing with geometry: they are used for
visualisation of geometrical objects, but also for exploring/testing geometrical
conjectures and, finally, for automated proving of geometrical theorems. Inte-
grating these ways of dealing with geometry brings new forms in communicating
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mathematical (geometrical, in this case) information — theorems, figures, and
proofs. In this way, the deductive nature of geometrical conjectures and proofs
is linked to the semantic nature of models of geometry and also, to human in-
tuition and to geometrical visualisations. In order to explore such mathematical
knowledge, a framework where one can browse through known results and seek
for new ones is needed. In this paper, we present a tightly integrated framework
that we developed, consisting of a repository of constructive geometry theorems
(and proofs), a geometry theorem prover, and dynamic geometry software (as
final applications). This complex framework provides an environment suitable
for new ways of studying and teaching geometry at different levels and bridging
spatial intuition with formal, axiomatic, Euclidean geometry proofs. The user
can browse through a list of geometric problems, their statements, illustration,
and proofs. He/she can also interactively use geometry software (GCLC, or Eu-
kleides), to describe new geometric constructions (and corresponding figures),
and GCLCprover to (try to) prove new conjectures, adding new results to the
existing ones. In addition, this framework provides an environment for storing
mathematical knowledge (in explicit, declarative way) — about geometrical con-
structions, proofs, and illustrations (in this context, geometrical illustrations are
not stored as images, but as their formal, explicit descriptions; while mathemat-
ical illustrations may carry information, the original message cannot always be
reproduced from the illustration itself; mathematical/geometrical images stored
via formal descriptions are easy to maintain, understand, modify, and process in
different ways — including for producing images.)

In this paper we present our framework consisting of dynamic geometry soft-
ware, automated theorem provers, and the repository of constructive geometry
conjectures. All constructions and conjectures are stored in formal, declarative
representation that can be used as a description of a construction, a description
of a figure, and also as a formal description of a conjecture that can be attempted
to be proved by the developed theorem prover.

Paper overview. Section 2, briefly discusses geometric constructions, the do-
main of our integrated framework; Section 3 talks about parts of our framework,
with §3.1 about dynamic geometry software, especially GCLC and Eukleides,
§3.2 about automated theorem proving in geometry and especially the prover
GCLCprover, based on the area method, and §3.3 about geoDB, a repository of
constructive geometric theorems and proofs. Section 4 is about our integrated
geometry framework and its features, and Section 5 presents the whole system
through a step-by-step example. Section 7 discusses further work and the issue of
standards for mathematical (geometrical, in this case) contents; Section 8 draws
final conclusions.

2 Geometry Constructions

For hundreds, or even thousands, of years geometric construction problems have
been one of the most attractive parts of geometry and mathematics. A geometric



construction is a sequence of specific, primitive construction steps. These primi-
tive construction steps (also called elementary constructions) are based on using
a ruler (or a straightedge3) and a compass, and they are:

– construction (with a ruler) of a line such that two given points belong to it;

– construction of a point which is an intersection of two lines (if such a point
exists);

– construction (with a compass) of a circle such that its centre is one given
point and such that the second given point belongs to it;

– construction of a segment connecting two points;

– construction of intersections between a given line and a given circle (if such
points exist).

By using the set of primitive constructions, one can define more complex con-
structions (e.g., the construction of a right angle, a construction of the midpoint
of a line segment, etc.).

Abstract (i.e., formal, axiomatic) nature of geometric objects have to be dis-
tinguished from their usual interpretations. A geometric construction is a proce-
dure consisting of abstract steps and it is not a picture, but for each construction
there is its counterpart in the standard Cartesian model.

Construction problems are often studied (in schools and universities) because
they require rigour, but are in the same time intuitive (since they require effective
procedures and since the level of abstraction is higher than the level of geometry
axioms). The study of geometry and construction problems also represents a
suitable field for interactive teaching supported by software tools.

3 Building Blocks

In this section, we present the building blocks of our geometry framework.

3.1 Dynamic Geometry Software, GCLC and Eukleides

Dynamic geometry software (e.g., Cinderella, Geometer’s Sketchpad, Cabri4) vi-
sualise geometric objects and link formal, axiomatic nature of geometry (most
often — Euclidean) with its standard models (e.g., Cartesian model) and corre-
sponding illustrations. The common experience is that dynamic geometry soft-
ware significantly help students to acquire knowledge about geometric objects.

GCLC [6, 8] is a tool for teaching and studying mathematics, especially geom-
etry and geometric constructions, and also for storing descriptions of mathemat-

3 The term “straightedge” is sometimes used instead of “ruler” in order to emphasise
there are no markings which could be used to make measurements.

4 See http://www.cinderella.de, http://www.keypress.com/sketchpad/,
http://www.cabri.com



ical figures and producing digital illustrations of high quality.5 GCLC provides
support for a range of geometric constructions and isometric transformations.
Although its primary initial goal is describing formal geometric constructions,
GCLC also provides a support for some non-constructible objects too. In GCLC
there is also support for symbolic expressions, second order curves, parametric
curves, while-loops, etc. Thus, GCLC is more than a geometry tool.

GCLC is based on the idea that constructions are formal procedures, rather
than drawings. Thus, in GCLC, producing mathematical illustrations is based
on “describing figures” rather than of “drawing figures” (in a sense, this system
is in spirit close to the LATEX system [10], with its logical design of texts). All
mathematical figures (not only geometric ones) are described in this spirit, in GC
language. These descriptions directly reflect meaning of mathematical objects to
be presented, and are easily understandable to mathematicians. In that sense,
this language is more a high-level language than a script language.

WinGCLC is the Windows version of GCLC, with a rich graphical interface
and provides a range of additional functionalities to GCLC. It supports interac-
tive work, animations, traces, “watch window” for monitoring values of selected
objects (“geometry calculator”) etc. [8].

Eukleides6 [14, 16] is an Euclidean geometry drawing language. Two pro-
grams are related to it. First, eukleides, a compiler for typesetting geometric
figures within a (La)TeX document. It can also convert such figures to EPS
format or to various other vector graphic formats. Second, xeukleides, a GUI
front-end for creating interactive geometric figures. This program can also be
used for editing and tuning Eukleides code. Eukleides, like GCLC has been de-
signed to be close to the traditional language of elementary Euclidean geometry.
In many cases, it is possible to completely avoid the use of Cartesian coordinates.

We have developed a tool euktogclcprover, that converts Eukleides files to
GCLCprover files, enabling the prover to be used with geometric constructions
described within Eukleides.

3.2 Automated Theorem Proving in Geometry and GCLCprover

Automated theorem proving in geometry has two major lines of research: syn-
thetic proof style and algebraic proof style (see, for instance, [12] for a survey).
Algebraic proof style methods are based on reducing geometry properties to al-
gebraic properties expressed in terms of Cartesian coordinates. These methods

5 GCLC package is freely available from www.matf.bg.ac.yu/~janicic/gclc/. The
mirrored version is available from emis (The European Mathematical Informa-
tion Service) www.emis.de/misc/index.html. There are command-line version and
graphic interface versions of GCLC for Windows, while there is only a command-line
version of GCLC for Linux.

6 Eukleides is available from http://www.eukleides.org, There are versions
for a number of languages. The first author of this paper is responsi-
ble for the Portuguese version of Eukleides: EukleidesPT is available from
http://gentzen.mat.uc.pt/~EukleidesPT/



are usually very efficient, but the proofs they produce do not reflect the geom-
etry nature of the problem and they give only a yes/no conclusion. Synthetic
methods attempt to automate traditional geometry proof methods that produce
human-readable proofs.

We have extended GCLC, with a theorem prover that allows formal deductive
reasoning about constructions made in the (main) drawing module. The built-in
prover, GCLCprover, is based on the area method [3, 4, 13]. It produces proofs
that are human-readable, and with a clear justification for every proof step. The
prover can be used in conjunction with other dynamic geometry software, which
demonstrate the flexibility of the developed deduction module.

The area method is a synthetic method providing traditional (not coordinate-
based), human-readable proofs. The proofs are expressed in terms of higher-level
geometric lemmas and expression simplifications. The main idea of the method
is to express hypotheses of a theorem using a set of constructive statements,
each of them introducing a new point, and to express a conclusion by an equal-
ity of expressions in some geometric quantities (e.g., signed area of a triangle),
without referring to Cartesian coordinates. The proof is then based on elimi-
nating (in reverse order) the points introduced before, using for that purpose a
set of appropriate lemmas. After eliminating all introduced points, the current
goal becomes an equality between two expressions in quantities over independent
points. If it is trivially true, then the original conjecture was proved valid, if it is
trivially false, then the conjecture was proved invalid, otherwise, the conjecture
has been neither proved nor disproved. In all stages, different simplifications are
applied to the current goal. The method does not have any branching, which
makes it very efficient for many non-trivial geometry theorems. The method can
transform a conjecture given as a geometry quantity of degree d, involving n

constructed points, to a rational expression not involving constructed points,
and with a degree at most 5d35n [3].

The area method is applicable to a wide range of constructions and a wide
range of geometric conjectures. For this fragment of geometry, the area method
gives a decision procedure: a terminating, sound, and complete procedure, i.e., a
procedure that can prove any geometry theorem involving only points introduced
by using supported constructions, and expressed in terms of geometric quantities.
For details of the method, correctness proofs for all simplification steps, and for
details about our implementation see [15].

GCLCprover is tightly integrated with geometry software. This means that
one can use the prover to reason about a (say) GCLC construction (i.e., about
objects introduced in it), without changing and adapting it for the deduction
process — the user only needs to add the conclusion he/she wants to prove.
The geometric constructions made within GCLC are internally transformed into
primitive constructions of the area method, and in some cases, some auxiliary
points are introduced.

GCLCprover was implemented in C++ (as GCLC) and is very efficient. The
theorem prover produces proofs in LATEX form and a report about the proving
process: whether the conjecture was proved or disproved, CPU time spent, and



number of proof steps performed. For each proof step, there is a justification, and
(optionally) its semantics counterpart (the semantic information is not used in
the proof itself, but it can be used for testing conjectures). The prover can prove
many complex geometric problems in milliseconds, producing readable proofs.

3.3 The geoDB database

The geoDB database gives support to the other programs, keeping the infor-
mation, and allowing for its fast retrieving whenever necessary. The database is
organised in the following form (see the entity-relationship diagram for details –
Figure 1):
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Fig. 1. geoDB — Entity-relationship diagram

theorems — statements of theorems, in natural-language form, formatted in
LATEX;

figures — descriptions of geometrical constructions, in DGS’s code (GCLC,
Eukleides, or other drawing software), they can be used for producing the
corresponding figures;

proofs — geometrical constructions with conjectures in ATP’s code
(GCLCprover, or other provers), they are used for producing the correspond-
ing proofs;

A geometric theorem can have different figures and/or proofs, made by dif-
ferent software, made by different users. This fact is expressed by the 1 to n

relationships between the entities “theorems” and the other two entities (see
Figure 1).

The database also has the following auxiliary entities:



bibrefs — bibliographic references, in BIBTEX format;
drawers & provers — information about the programs whose code is kept in

the database, and with which the user can interact;
authors — information about the authors of the programs;
users — information about registered users.
computer — information about the computer used as the test bench.

The codeTmp and codeTmpProver tables are used to store temporary infor-
mation, deleted after each session, for the interactive section of GeoThms.

The geoDB database is implemented in MySQL, with InnoDB transition safe
type of tables, and with foreign key constraints.

4 The Framework

GeoThms7, is a framework that links dynamic geometry software (GCLC, Euk-
leides), geometry theorem provers (GCLCprover), and a repository of geometry
problems (geoDB) (see Figure 2).
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Fig. 2. The GeoThms framework

GeoThms provides a Web workbench in the field of constructive problems
in Euclidean geometry. Its tight integration with dynamic geometry software

7 GeoThms is accessible from http://hilbert.mat.uc.pt/~geothms



and automatic theorem provers (GCLC, Eukleides, and GCLCprover, for the
moment) and its repository of theorems, figures and proofs, give the user the
possibility to easily browse through the list of geometric problems, their state-
ments, illustrations and proofs, and also to interactively use the drawing and
proving programs (See Figure 3).

Fig. 3. GeoThms screenshot - Theorem Report

The structure of the web interface has two main levels of interaction (see
Figure 4). The entry level, accessible to all web-users, has some basic informa-
tion about GeoThms, including documents about the GeoThms Framework, and
about the GCLCprover and the Area Method. This level offers the possibility
of registration to anyone interested in using GeoThms, and it gives access to
the other levels. A (registered) regular user has access to a second level where
he/she can browse the data from the database (in a formatted, or in a plain
textual form) and use the drawing/proof programs in an interactive way.

A regular user can apply to the status of contributer in which case he/she
will have the possibility to insert new data, and/or to update the data he/she
had inserted previously.

Constructions are described and stored in declarative languages of dynamic
geometry software such as GCLC and Eukleides. Figures are generated directly
on the basis of descriptions of constructions, by GCLC and Eukleides and stored



as JPEG files. Conjectures are described and stored in a a form that extends
descriptions of constructions. Descriptions of conjectures is used (directly or via
a converter) by GCLCprover. Proofs are generated by GCLCprover and stored as
PDF files (after beeing processed by LATEX, using a specific layout, gclc proof

style).

The framework can be simply augmented by other dynamic geometry soft-
ware and other geometry theorem provers.

FormsWorkbenchReports

Regular User

Registration/Login Help

GeoThms

Contributers

all the info together

Statements
Figures
Proofs

Provers
Drawers
Authors
BibRefs

Drawing tools
Provers Statements

Figures
Proofs

Provers
Drawers
Authors
BibRefs

Listings of: Interaction with Insert/Update info

Geometric Theorems Geometric Theorems

Fig. 4. GeoThms — Web Interface

GeoThms gives the user a complex framework suitable for new ways of com-
municating mathematical (geometrical, in this case) knowledge. It provides an
open system where one can learn from the existing knowledge base and seek for
new results. GeoThms also provides a system for storing mathematical knowl-
edge (in a strict, declarative form) — not only theorem statements, but also their
(automatically generated) proofs and corresponding figures, i.e., visualisations.

5 Geothms by Example

In this section we describe GeoThms framework through a step-by-step example.
The circumcircle of a triangle is the unique circle on which all its three vertices

lie. Its center can be constructed as the intersection of any two out of the three
perpendicular side bisectors. The crucial point is: do the three perpendicular
side bisectors meet in a single point?



We can use GeoThms to answer this question, by describing the construction
and proving the property. Using the interactive part of GeoThms, a user can
begin by the construction, proceed attempting to prove the conjecture and, if all
went as expected, insert all this information, along with the new result statement,
in the database.

5.1 Describing the Construction

Fig. 5. Circumcircle of a triangle — Interaction with the DGS

The constructive specification of the figure has to define: three points A, B,
C (the vertices of the triangle); three side bisectors; points O1 and O2 defined
as the pairwise intersections of these lines. Apart from the construction steps,
the figure description also provides the coordinates of the points A, B, and C,
and all the “drawing” commands. Note that all these commands are irrelevant
for the theorem prover, but are relevant for producing figures (see Figure 5).

The construction shown in Figure 5 was made using GCLC, but the user can
also use Eukleides for describing the construction, by instructions very similar
to the given ones.

5.2 Testing the Conjecture

Having described the construction of the figure, now we have to add the con-
jecture. The property to be proved can be expressed in the following way: the



Fig. 6. Circumcircle of a triangle — Interaction with the ATP

points O1 and O2 are identical. The user must express this condition within the
command prove, and using the geometrical quantities supported by the area
method, in this case — via the Pythagoras difference geometric quantity (for
more details, see [15]).

All the commands used in the construction of the figure are internally (within
the prover) transformed into primitive constructions of the area method. The
GCLC’s code can be submitted to GCLCprover without modifications, the Eu-
kleides’ code needs to be converted with the euktogclcprover tool. As shown
in Figure 6, the proof status and the measures of efficiency are accessible, the
proof is given as a PDF file. Figure 7 shows the last steps of the proof made by
GCLCprover. The proof was generated in 0.03 seconds.8

5.3 Inserting a Result in the Database

The user (with the status of contributer) can select the “Forms” section in order
to insert a statement for the new result and the corresponding figure and proof
(see Figure 8). The statement is kept in the database in LATEX format and in
declarative ATP’s code9, the figure description is kept in DGS’s code and also in

8 Many complex geometry theorems can be proved by the system in only milliseconds.
For instance: theorems by Ceva (0.001s), Gauss (0.029s), Thales (0.001s), Menelaus
(0.002s), Pappus’ Hexagon (0.040s), midpoint theorem (0.002s), ratio of areas of
parallelograms (0.190s), etc.

9 ATP’s code share most of DGS’s code, the only difference is the conjecture itself,
which does not appear in DGS’s code
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Fig. 7. Last steps of the proof of the Circumcircle theorem

JPEG format, the proof is kept in PDF format. For these last two, this means
that the DGSs and ATPs are called before the actual insertion is made, validating
the code. The JPEG and PDF files are kept in order to avoid the re-evaluation
of the code each time a user wants to consult the database.

Fig. 8. Circumcircle of a triangle — Insertion Form

After inserting, this new result became available for all users, not only in
the “Reports” section, but also in the “Interaction” section. In all cases the user



has access to the code allowing him/her to use it for inclusion in mathematical
texts, for testing further results, etc. (see Figure 3).

6 Related Systems

There are, to our knowledge, the following systems, similar to the system pre-
sented in this paper: Geometry Expert (GEX)10; Ludi Geometrici

(geometriagon)11; Cinderella [9]; Discover [2]; and GeoView [1]. The GEX pro-
gram (new version currently under development) is a DGS with a web interface;
it incorporates an ATP, but, unlike GCLCprover, the GEX prover implements
an algebraic proof method, and the user can only select one from a limited
number of conclusions (e.g., are three selected point collinear?). The GEX tool
does not have an accessible database of problems, and does not provide a for-
matted output for images and proofs. The geometriagon has an already vast
repository of problems in the area of classical constructive (ruler and compass
only) Euclidean geometry, a registered user can access/edit all problems and
solutions. It does not provide an ATP. The user can perform only valid steps in
the construction, using only a limited set of tools, and in this way the system
is capable to recognise whenever a user has reach a solution of a problem. The
geometriagon does not provide any formatted output. Cinderella uses randomise
theorem checking to analyse its users actions and to react properly; it does not
provide a proof for a given construction in any form. Discover is a DGS that can
communicate with Mathematica12, using the symbolic capabilities of the latter
to implement the Gröebner bases method, hence, it is necessary to translate the
geometric construction to an algebraic form and back, from the conclusion in
algebraic form to its geometric counterpart. No proof in any form is provided.
The Geoview software combines the Coq13 ATP and the GeoplanJ14 DGS into
a system where it is possible to edit statements of geometrical theorems, and to
visualise the statement using the DGS. The proofs are not accessible. None of
this last three systems have a database of problems easily accessible to its users.

7 Further Work

Automated theorem provers, applications, and repository of problems are often
developed separately. In some cases, joint efforts of numbers of researchers led
to standards such as DIMACS (for propositional logic) [5] and SMT (for satis-
fiability modulo theory) [17] and repositories of problems such as SAT-lib (for
propositional logic) [7], TPTP (for predicate logic) [18], SMT-lib (for satisfiabil-
ity modulo theory) [17] etc. Such efforts, standards, and libraries are fruitful for

10 GEX tool: http://woody.cs.wichita.edu/gex/7-10/gex.html
11 geometriagon: http://www.polarprof.net/geometriagon/
12 http://www.wolfram.com
13 http://coq.inria.fr/
14 http://erathostene.math.univ-montp2.fr/SPIP/De-Geoplan-Geospace-a-GeoplanJ



easier exchange of problems, ideas, and even program code. However, this is often
very demanding and there are no many systems smoothly integrating libraries of
problems, theorem provers, and real-world applications. In the previous sections,
we presented a tightly integrated system consisting of a library of geometry con-
struction problems, dynamic geometry software, and a geometry theorem prover.
This system can serve as a good starting point for defining open repository of
geometry problems. Currently, geometry conjectures are stored within the de-
scription of constructions, in GCLC or in Eukleides language (with additional,
natural-language descriptions). This representation is formal, declarative and
precise. The strict description of the notion of geometrical constructions and
also our experience with GCLC, Eukleides and other similar programs show
that different languages are very close to each other (primarily dealing with
elementary constructions and isometric transformations, but also with dealing
with scaling of figures, labelling components of figures, etc.). We believe that de-
scriptions in all these languages can be normalised, i.e., transformed to a single
description. We have already developed the converter from Eukleides to GCLC,
but similar converters can be made for other pairs of languages. We propose
defining such a normal, referent form, and making a repository usable by all
geometry programs. Such language should have a XML version (in a similar way
as for SMT-LIB [11]), closer to wide relevant mathematical initiatives such as
MathML.15 That way, it would be possible to store descriptions of constructions
in a quality form that provides both formal mathematical contents and visual
contents. Moreover, the generic XML validation mechanism could be used for
verifying whether a given construction is legal.

8 Conclusions

In this paper we presented our framework GeoThms consisting of dynamic ge-
ometry software GCLC and Eukleides, automated theorem prover GCLCprover,
and the repository of constructive geometry conjectures geoDB, all accessible
through a web interface.

This complex framework provides an environment suitable for new ways of
studying and teaching geometry at different levels. In addition, this framework
provides an environment for storing mathematical knowledge (in explicit, declar-
ative way) — about geometrical constructions, proofs, and illustrations. We hope
that support from interested parties will make GeoThms growing and widely
used repository.

We are planning to link additional geometry programs and additional theo-
rem provers to our framework and to further develop the web interface. We are
also considering developing a referent geometry language that can be linked to
all geometry programs dealing with Euclidean constructions.

15 MathML is the Mathematical Markup Language. It is an XML application for de-
scribing mathematical notation and capturing both its structure and content.
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