
XML-based Format for Descriptions of

Geometrical Constructions and Geometrical

Proofs

Pedro Quaresma1⋆, Predrag Janičić2⋆⋆, Jelena Tomašević2⋆⋆, Milena
Vujošević-Janičić2⋆⋆, and Dušan Tošić2⋆⋆

1 CISUC/Department of Mathematics, University of Coimbra
3001-454 Coimbra, Portugal, pedro@mat.uc.pt

2 Faculty of Mathematics, University of Belgrade
Studentski trg 16, 11000 Belgrade, Serbia

janicic@matf.bg.ac.yu, jtomasevic@matf.bg.ac.yu, milena@matf.bg.ac.yu,
dtosic@matf.bg.ac.yu

Abstract. With a large number of tools focusing on visualising geo-
metrical constructions or on proving properties of constructed objects
(or both), there is an emerging need of linking them, and making them
and their corpora, widely usable. A common setting that links these tools
would be important in the field of geometrical constructions and in their
role in education. In this paper we propose a common, xml-based, inter-
change format for descriptions of geometrical constructions and proofs.
We also present a xml library providing support for dynamic geometry
software and automatic theorem provers, and its integration into our
web-based GeoThms system.

1 Introduction

Dynamic geometry software (DGS), such as Cinderella, Geometer’s Sketchpad,
Cabri,1 visualise geometric objects and link formal, axiomatic nature of geome-
try, most often Euclidean, with its Cartesian models and corresponding illustra-
tions. The common experience tell us that, dynamic geometry tools significantly
help students to acquire knowledge about geometric objects and, more generally,
for acquiring mathematical rigour.

In many DGSs, a geometric construction is specified using, explicitly, a formal
language. In others, the construction is made interactively, by clicking specific
buttons and/or icons, but behind this approach there is also a formal geometrical
language, although usually hidden from the user. All these languages share many
primitive commands (related to geometrical constructions), but there are also

⋆ This work was partially supported by programme POSC.
⋆⋆ This work was partially supported by Serbian Ministry of Science and Technology

grant 144030.
1 See http://www.cinderella.de, http://www.keypress.com/sketchpad/,
http://www.cabri.com



differences in the set of supported commands, and they follow different syntax
rules.

Besides DGSs, there are automated theorem provers (ATP) specialised for
geometrical constructions. Some of them aim at producing traditional, human
readable geometrical proofs [1, 8, 14].

With a large number of tools focusing on visualising geometrical construc-
tions or on proving properties of constructed objects (or both), there is an emerg-
ing need of linking them and making widely usable constructions and proofs
generated with different tools. This would help in the progress of the field of
geometrical constructions, including their role in education.

We believe that descriptions of geometrical constructions and geometrical
proofs should be put into the xml framework, by defining a normal form, linked
to different formats. In this paper we describe a xml-based system built on such
xml-based format. These are some of the most important motivating arguments
for using xml in storing descriptions of geometrical constructions and proofs,
and as interchange format:

– instead of raw, plain text representation, geometrical constructions will be
stored in strictly structured files; these files will be easy to parse, process,
and convert into different forms and formats;

– input/output tasks will be supported by generic, external tools and different
geometry tools will communicate easily;

– growing corpora of geometrical constructions will be unified and accessible
to users of different geometry tools;

– easier communication and exchange of material with the rest of mathematical
and computer science community;

– there is a wide and growing support for xml;
– different sorts of presentation (text form, LATEX form, html) easily enabled;
– strict content validation of documents with respect to given restrictions.

We have implemented converters for two DGSs, confirming, in this way, that
the proposed xml format can serve its main purpose. We have also developed
xml support for automatically generated proofs of constructive geometrical the-
orems. These tools, together with rendering tools (tools for visual presentation
of xml files) were built-in together in our GeoThms framework.

2 Background

In this section we give some basic background information about geometrical
constructions, xml, and our GeoThms framework that links DGSs, ATPs, and
a repository of geometry problems.

2.1 Geometrical Constructions

For hundreds, or even thousands of years geometric construction problems have
been one of the most attractive parts of geometry and mathematics. A geometric



construction is a sequence of specific, primitive construction steps. These primi-
tive construction steps (also called elementary constructions) are based on using
a ruler (or a straightedge2) and a compass, and they are:

– construction (with ruler) of a line such that two given points belong to it;
– construction (with ruler) of a segment connecting two points;
– construction (with compass) of a circle such that its centre is one given point

and such that the second given point belongs to it;
– construction of a point which is an intersection of two lines (if such a point

exists);
– construction of intersections between a given line and a given circle (if such

points exist).

By using the set of primitive constructions, one can define more complex con-
structions (e.g., the construction of a right angle, a construction of the midpoint
of a line segment, etc.).

The abstract (i.e., formal, axiomatic) nature of geometric objects have to
be distinguished from their usual interpretations. A geometric construction is
a procedure consisting of abstract steps and it is not a picture, but for each
construction there is its counterpart in the standard Cartesian model.

2.2 XML

Extensible Markup Language (xml) is a simple, very flexible text format for
data structuring using tags, inspired by SGML (ISO 8879). Originally designed
to meet the challenges of large-scale electronic publishing, xml is also playing an
increasingly important role in the exchange of a wide variety of data on the Web
and elsewhere3. It is called extensible because it is not a fixed format like html

(a single, predefined markup language), instead the tags indicate the semantic
structure of the data, rather than (only) its layout in a browser. xml is actually
a “metalanguage”, — a language for describing other languages, which lets one
design his/her own customised markup languages for limitless different types of
documents. xml provides a structured way of transmitting information between
programs and systems. It is intended to make it easy to define document types,
to write and maintain documents, and to share them across the Internet.

However, xml is not just for Web pages: it can be used to store any kind
of structured information, and to enclose or encapsulate information in order
to pass it between different computing systems. An xml document can carry
both presentation (i.e., plausible visualisation) and content information. xml is
a project of the World Wide Web Consortium (W3C) and is a public format —
it is not a proprietary development of any company. Almost all browsers that
are currently in use support xml natively.

2 The term “straightedge” is sometimes used instead of “ruler” in order to emphasise
there are no markings which could be used to make measurements.

3 http://www.w3.org/XML/



Data type definitions (dtds) provide a formal specification of the constraints
on the structure of data presented in xml form. A dtd is given as a formal de-
scription in xml declaration syntax. It sets out what names are to be used for the
different types of element, where they may occur, and how they all fit together.
This formal description enables automatic verification (“validation”) of whether
a document meets the given syntactical restrictions. This way, groups sharing
data of a similar sort can agree on their xml representation and corresponding
dtds.

Extensible stylesheet language transformation (xslt) is a document process-
ing language that is used to transform the input xml documents to output files.
An xslt style-sheet declares a set of rules (templates) for an xslt processor to
use when interpreting the contents of an input xml document. These rules tell
to the xslt processor how that data should be presented: as an xml document,
as an html document, as plain text, or in some other form.

Scalable Vector Graphics (svg) is a language, based on xml, for describing
two-dimensional graphics and graphical applications. As for other xml applica-
tions, there is a W3C recommendation for svg4.

2.3 GeoThms Framework

GeoThms5, is a Web workbench in the field of constructive problems in Euclidean
geometry. It is a framework that links dynamic geometry software, geometry au-
tomatic theorem provers, and a repository of geometry problems (geoDB), pro-
viding a common web interface for all these tools. Its tight integration of dynamic
geometry tools and automatic theorem provers and its repository of theorems,
figures and proofs, gives the user the possibility to easily browse through the
list of geometric problems, their statements, illustrations and proofs. Currently,
there are the following tools integrated in GeoThms:

GCLC [6]6 and Eukleides [9, 11]7 are two DGS; they both use (similar) ge-
ometry drawing languages in which producing mathematical illustrations is
based on “describing figures”, rather than on “drawing figures”. These de-
scriptions directly reflect meaning of mathematical objects to be presented,
and are easily understandable to mathematicians. Both tools have graphical
user interfaces and the ability to produce LATEX files with illustrations for
geometrical constructions.

4 http://www.w3.org/Graphics/SVG/
5 GeoThms is accessible from http://hilbert.mat.uc.pt/

~
geothms.

6
gclc package is freely available from www.matf.bg.ac.yu/~janicic/gclc/. The mir-
rored version is available from emis (The European Mathematical Information Ser-
vice) www.emis.de/misc/index.html. There are versions for Windows and Linux.

7 Eukleides is available from http://www.eukleides.org. There are versions
for a number of languages. The first author of this paper is responsi-
ble for the Portuguese version of Eukleides: EukleidesPT is available from
http://gentzen.mat.uc.pt/

~
EukleidesPT/



GCLCprover is an ATP based on the area method [2, 3, 7, 10], a theorem
prover that allows formal deductive reasoning about objects constructed
with the help of DGSs. It produces proofs that are human-readable, and
with a clear justification for every proof step. GCLCprover is tightly inte-
grated with the gclc, which means that one can use the prover to reason
about a gclc construction, without changing and adapting it for the deduc-
tion process. The users only need to add a statement that they want to prove.
The geometrical constructions made within gclc are internally transformed
into primitive constructions of the area method, and in certain cases, some
auxiliary points are introduced. With support of our xml library, it is also
possible to reason about the Eukleides constructions.

geoDB database gives support to the other tools, keeping the information,
and allowing for its fast retrieving whenever necessary. Constructions are
described and stored in xml form. Figures are generated from the xml files,
by DGSs, and stored in suitable formats (jpeg and svg). Conjectures are
described and stored in a form that extend geometric specifications. The
specifications of conjectures are used via converters by ATPs. Proofs are
generated by ATPs and stored in suitable formats (pdf and xml in com-
pressed form).

3 Overall Architecture

In this section we provide some motivating arguments for introducing xml-based
format in representing geometrical constructions and geometrical proofs. Also,
we propose the architecture of a system based on these motivations and ideas
(the actual implementation of our system is described in the next section).

3.1 Representation of Construction Descriptions

All dynamic geometry tools use some formal languages for describing geomet-
rical objects (either a hidden, underlying language or a user-oriented language).
Consider, for instance, two equivalent descriptions (in gclc language and in
Eukleides language) of the same construction given in Figure 1 (see also the
corresponding illustration in Figure 2). gclc language and Eukleides language
were developed/defined independently by independent authors. Corresponding
descriptions in languages of many other geometry tools are similar. The reason
for this is that all these tools describe (standardised) elementary constructions
by ruler and compass (see §2.1) and deal with similar additional requests for
drawing and labelling geometrical figures. So, all of these languages are very
similar, but still different (due to different main purposes, different authors,
different implementations, etc.)

In order to enable communication between these tools and converting files
between different formats, it is good to have a single target format, a format
that could define a common normal form for different tools. We propose one such
format, within a general xml specification. Figure 3 shows how the description



dim 80 80

point A 10 30

point B 60 10

point C 50 70

med a B C

med b A C

med c B A

intersec O_1 a b

intersec O_2 a c

drawline a

drawline b

drawline c

drawsegment A B

drawsegment A C

drawsegment B C

cmark_lb A

cmark_b B

cmark_t C

cmark_t O_1

cmark_lb O_2

drawcircle O_1 A

frame(0,0,8,8)

A = point(1,3)

B = point(6,1)

C = point(5,7)

a = bisector(segment(B,C))

b = bisector(segment(A,C))

c = bisector(segment(B,A))

O1 = intersection(a,b)

O2 = intersection(a,c)

draw(a)

draw(b)

draw(c)

draw(segment(A,B))

draw(segment(A,C))

draw(segment(B,C))

draw(A); label(A,-90:)

draw(B); label(B,-90:)

draw(C); label(C,90:)

draw(O1); label(O1,90:)

draw(O2); label(O2,-135:)

draw(circle(O1,length(segment(O1,A))))

Fig. 1. Equivalent descriptions of a construction in gclc (left) and in Eukleides (right)
languages

given in Figure 1 can look in xml version. Notice, again, a direct link between
the xml representation and representations in gclc and Eukleides languages.

Converting from a DGS language to xml, would be performed by a specific
converter, naturally relying on the DGS’s parsing mechanism. Converting from
xml to a DGS language, will be implemented via a xslt file (see Figure 4).

Having converters from, and to, xml format for all DGSs, we (indirectly)
have converters from each format to any other format (see Figure 5). Thus, in
this way, the base for a common interchange format is provided. xml is a natural
framework for such interchange format, because of its strict syntax, verification
mechanisms, suitable usage on the Internet, and a large number of available
supporting tools.

xml descriptions of constructions can be, by means of xslt, also transformed
into html format that is convenient for human-readable display in browsers. It
can also be transformed into different representations, such as natural language
form.



A

B

C

O1

O2

Fig. 2. Illustration that corresponds to construction descriptions given in Figure 1 (this
illustration in LATEX format was generated by gclc).

A specific dtd document would define syntactical restrictions for construc-
tion descriptions. This dtd document can then be used, in conjunction with the
generic xml validation mechanism (based on dtss or xml schemes), for verifying
whether a given description of a geometrical construction is legal.

3.2 SVG support

As said in the previous subsection, xml format can be used for representing
descriptions of geometrical constructions and, hence, as an interchange format
for different geometry tools. On the other hand, this representation can be used
for visualisation of constructions, by using svg. The visualisation data (in svg)
can be generated directly from the xml description of a construction (basically
requiring a new geometry tool). Another possibility is to implement, within a
DGS, an export to svg option.

With this option implemented, the visualisation data (in svg) could be gen-
erated from the xml description indirectly — the xml description would be
first converted to a representation of the geometry tool, and then further to svg

format. Note that, with only a limited numbers of converters, a wide range of
processing of geometrical descriptions would be possible.

3.3 Representation of Proofs

Geometrical proofs should be stored in a way that provides:



<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE figure SYSTEM "GeoCons.dtd">
<?xml-stylesheet href="GeoConsHTML.xsl" type="text/xsl"?>

<figure>

<draw>
<dimensions width="80.000000" height="80.000000"></dimensions>

</draw>

<define>

<fixed_point x="10.000000" y="30.000000">A</fixed_point>
<fixed_point x="60.000000" y="10.000000">B</fixed_point>

<fixed_point x="50.000000" y="70.000000">C</fixed_point>
</define>

<construct>
<segment_bisector><new_line>a</new_line><point>B</point><point>C</point></segment_bisector>

<segment_bisector><new_line>b</new_line><point>A</point><point>C</point></segment_bisector>
<segment_bisector><new_line>c</new_line><point>B</point><point>A</point></segment_bisector>

<intersection><new_point>O_1</new_point><line>a</line><line>b</line></intersection>
<intersection><new_point>O_2</new_point><line>a</line><line>c</line></intersection>

</construct>

<draw>

<line>a</line>
<line>b</line>
<line>c</line>

<segment><point>A</point><point>B</point></segment>
<segment><point>A</point><point>C</point></segment>

<segment><point>B</point><point>C</point></segment>
</draw>

<labels>
<point_label direction="225"><point>A</point></point_label>

<point_label direction="270"><point>B</point></point_label>
<point_label direction="90"><point>C</point></point_label>

<point_label direction="90"><point>O_1</point></point_label>
<point_label direction="225"><point>O_2</point></point_label>

</labels>

<draw>

<circle_cp><center>O_1</center><point>A</point></circle_cp>
</draw>

</figure>

Fig. 3. xml version of construction descriptions given in Figure 1

XML formatDGS format

special converter

XSLT

Fig. 4. Conversion links between a DGS via xml format



XML format

GCLC format Eukleides format . . . DGS-n

Fig. 5. Conversion links to and from xml format

– strict verification;
– different sorts of presentation for easier understanding.

Geometrical proofs could be stored in different forms, for instance in ax-
iomatic form (e.g., in Hilbert-style, sequent calculus style, etc). Representing
higher-level proofs, produced by the area-method, is also interesting. Proofs
generated by this method consist of sequences of equalities involving expres-
sions over geometry quantities (such as a signed area of triangle). For each step
of the proof, leading from one equality to another, there is a detailed justification
(in terms of used definition or lemma): for elimination steps, geometrical sim-
plification steps, and for algebraic simplification steps. These proofs have linear
structure, but may involve subproofs (proofs of lemmas).

4 Implementation

In this section we describe our xml suite for geometrical constructions and
geometrical proofs (see Figure 6 and 7 for illustration how it is used within
GeoThms). It follows motivations and ideas given in Section 3 and consists of:

– newly defined xml-based format for representing geometrical constructions
with corresponding dtd; this format covers standard constructions by ruler
and compass, but also a range of other devices supported by dynamic geome-
try tools (including, for instance, compound constructions, transformations,
labelling etc.);

– converters from dynamic geometry tools to xml-based form (currently, there
are converters for gclc and Eukleides; these converters were written in the
programming languages C++ and C, as the main tools themselves);

– converters for descriptions of constructions from xml-based form to dynamic
geometry tools (currently, there are converters for gclc and Eukleides; these
converters were implemented as xslt files);



circleNL.xml

circle.svg

8

circle.euk 

circle.gcl

circle.xml  

circle.euk

circle.jpg

1

2 6

circle.gcl

circleHTML.xml

3 4

5

7

circle.jpg

9

others others

1 − gclc circle.gcl circle.xml −xml

2 − euktoxml circle.euk circle.xml

3 − GeoConsHTML.xsl

4 − GeoConsNL.xsl

5 − GeoConsGCLC.xsl

6 − GeoConsEUK.xsl

7 − gclc+LaTeX+other tools

8 − gclc circle.gcl circle.svg −svg

9 − eukleides+LaTeX+other tools

GeoThms

geoDB

Fig. 6. Illustration of architecture of the xml suite for geometrical constructions

– a converter for descriptions of constructions from xml-based form to a sim-
ple, readable html form (with syntax colouring features, provided for better
readability); this converter was implemented as a xslt file;

– a converter from xml-based form to a natural language form (currently, only
for English language); this converter was implemented as a xslt file;

– a tool for exporting figures from dynamic geometry tools to svg format
(currently, there is a converter for gclc; this converter was written in the
programming language C++, as the main tool itself);

– newly defined xml-based format for representing proofs of properties of geo-
metrical constructions with a corresponding dtd; the format is adapted for
the area-method;

circleNL.xml

1 − gclc circle.gcl circle.xml −xml

2 − euktoxml circle.euk circle.xml

3 − GeoConsHTML.xsl

4 − GeoConsNL.xsl

circle.xml  

1

2

geoDB

circleHTML.xml

3

GeoThms

5

4
circleProof.xml

circleProof.pdf

6

7

5 − GeoConsGCLC.xsl 6 − gclc + GeoConsProof.xsl

7 − gclc + LaTeX + other tools

other ATPsother DGSs

circle.gcl

(with a conjecture)

circle.euk 

(with a conjecture)

circle.gcl

Fig. 7. Illustration of architecture of the xml suite for geometrical proofs



– a tool for exporting proofs from automated theorem provers systems to xml-
based form (currently, there is a converter for GCLCprover; this converter
was written in the programming language C++, as the main tool itself);

– a converter for proofs from xml-based form to a simple, readable html form
(with syntax colouring features, and other features for better readability);
this converter was implemented as a xslt file;

GeoThms uses xml format to high extent, for storing, communicating, and
presenting data. The presented suite is available:

– via GeoThms (from http://hilbert.mat.uc.pt/
~
geothms)

– and partly within a distribution package for gclc (from
http://www.matf.bg.ac.yu/

~
janicic/gclc/).

Some examples built with the help of the above mentioned tools are given in
Section 5.

5 Examples

Figure 3 shows the xml code that corresponds to construction descriptions given
in Figure 1. The code is simple and readable. Within the code, there were points
A, B, C introduced, and then the bisectors a and b of the sides BC and AC were
constructed. The intersection of a and b is denoted by O1 (note that this point is
the centre of circumcircle of the triangle ABC). The four points, the three sides
of the triangles, and the circle with the centre O1, containing the point A are
shown (Figure 2 is a visualisation of this construction; it is generated in LATEX
format by gclc tool).

The contents of the file shown in Figure 3 is valid with respect to a special-
purpose dtd, developed for geometrical constructions. Part of this dtd is shown
in Figure 8.

The contents of the file shown in Figure 3 was generated by the converter
from gclc to xml format.

The contents of the file shown in Figure 3, transformed by the xslt files
geocons-gclc.xsl and geocons-eukleides.xsl, gives (exactly) the contents
in gclc and Eukleides format shown in Figure 1.

The contents of the file shown in Figure 3, transformed by the xslt file
geoconsHTML.xsl gives simple and readable description of the construction pre-
sented in html (Figure 9). The contents of the file shown in Figure 3, trans-
formed by the xslt file geoconsNL.xsl gives a similar description, in html, but
in a natural-language form (Figure 10).

A svg-based visualisation of the construction given in Figure 3 is shown in
Figure 11. It was obtained by first converting the file shown in Figure 3 to gclc

format, and then by using the option for exporting from gclc format to svg.



<!--**************constructions**************-->
<!ELEMENT construct (intersection|intersection_cc|intersection_cl|midpoint|

foot|random_point_on_line|translate|towards|rotate|half_turn|

line_reflection|inversion|ruler|parallel|perpendicular|
segment_bisector|angle_bisector|compass)*>

<!ELEMENT new_point (#PCDATA)>

<!ELEMENT intersection (new_point,line,line)>
<!ELEMENT intersection_cc (new_point,new_point,circle,circle)>
<!ELEMENT intersection_cl (new_point,new_point,circle,line)>

<!ELEMENT midpoint (new_point,point,point)>
<!ELEMENT foot (new_point,point,line)>

<!ELEMENT random_point_on_line (new_point,point,point)>
<!ELEMENT translate (new_point,vector,point)>
<!ELEMENT towards (new_point,vector,coefficient)>

<!ELEMENT rotate (new_point,center,angle,point)>
<!ELEMENT half_turn (new_point,center,point)>

<!ELEMENT line_reflection (new_point,line,point)>
<!ELEMENT inversion (new_point,circle,point)>

<!ELEMENT new_line (#PCDATA)>
<!ELEMENT ruler (new_line,point,point)>

<!ELEMENT parallel (new_line,point,line)>
<!ELEMENT perpendicular (new_line,point,line)>

<!ELEMENT segment_bisector (new_line,point,point)>
<!ELEMENT angle_bisector (new_line,point,point,point)>

<!ELEMENT new_circle (#PCDATA)>

Fig. 8. Part of the dtd for geometrical constructions

Our xml suit also has support for storing and presenting geometrical proofs.
The current support is aimed only at the proofs produced by the area method
(but it is subject to changes and extensions for other proof styles). Consider the
construction described in Figure 3. If we construct a bisector c of the side AB,
and if we construct the intersection O2 of the lines a and c, then the points O1

and O2 will be identical. This property can be proved by GCLCprover. Figure 13
shows part of this proof presented in html. Figure 12 shows a fragment of the
proof generated by GCLCprover in xml. The code is simple and readable. It
is valid with respect to a dtd developed for proofs of properties of geometrical
constructions. Part of this dtd is shown in Figure 14.

6 Conclusions and Further Work

We have presented a case for using xml in describing geometrical constructions
and proofs, and as an interchange format for dynamic geometry tools. We gave
a brief description of the notion of geometrical constructions, xml, and the
geometrical software tools that already use our support for xml. Our xml suite
is publicly available and used in the GeoThms framework.

The work presented in this paper is related to work in other domains of
automated reasoning: joint efforts of numbers of researchers led to standards
such as DIMACS (for propositional logic) [4] and SMT (for satisfiability mod-
ulo theory) [12] and repositories of problems such as SAT-lib (for propositional



Fig. 9. html presentation of the contents of file shown in Figure 2

logic) [5], TPTP (for predicate logic) [13], SMT-lib (for satisfiability modulo
theory) [12] etc. Such efforts, standards, and libraries are very fruitful for easier
exchange of problems, proofs, and even program code, and they help advancing
the underlying field.

We are planning to work on further improvements (based on xml schemes)
of the validation mechanism including some semantics checks. Also, we will work
on extending and improving the format for proofs, and especially on using ap-
plications such as MathML, and schemes for describing mathematical contents
such as OMDoc.

We intend to further build the database of geometrical constructions within
GeoThms and, hopefully lead it to a major public resource for geometrical con-
structions, linking a number of geometry tools, format and repositories.

References

1. Buchberger, Bruno et.al.. Theorema: Towards Computer-Aided Mathematical The-
ory Exploration. J. Applied Logic, 2006.



Fig. 10. Natural-language presentation of the contents of file shown in Figure 2

Fig. 11. SVG visualisation of the construction presented in Figure 2



<proof_step>

<equality>

<expression>

<sum>

<expression>

<sum>

<expression>

<mult>

<expression>

<segment_ratio><segment><point>M_{a}^{0}</point><point>O_1</point></segment>

<segment><point>M_{a}^{0}</point><point>T_{a}^{1}</point></segment>

</segment_ratio>

</expression>

<expression>

<pythagoras_difference3><point>A</point><point>T_{a}^{1}</point><point>A</point></pythagoras_difference3>

</expression>

</mult>

</expression>

<expression>

<mult>

<expression>

<segment_ratio><segment><point>O_1</point><point>T_{a}^{1}</point></segment>

<segment><point>M_{a}^{0}</point><point>T_{a}^{1}</point></segment>

</segment_ratio>

</expression>

<expression>

<pythagoras_difference3><point>A</point><point>M_{a}^{0}</point><point>A</point></pythagoras_difference3>

</expression>

</mult>

</expression>

</sum>

</expression>

<expression>

<mult>

<expression>

<number>-1.000000</number>

</expression>

<expression>

<mult>

<expression>

<mult>

<expression>

<segment_ratio><segment><point>M_{a}^{0}</point><point>O_1</point></segment>

<segment><point>M_{a}^{0}</point><point>T_{a}^{1}</point></segment>

</segment_ratio>

</expression>

<expression>

<segment_ratio><segment><point>O_1</point><point>T_{a}^{1}</point></segment>

<segment><point>M_{a}^{0}</point><point>T_{a}^{1}</point></segment>

</segment_ratio>

</expression>

</mult>

</expression>

<expression>

<pythagoras_difference3><point>M_{a}^{0}</point><point>T_{a}^{1}</point><point>M_{a}^{0}</point></pythagoras_difference3>

</expression>

</mult>

</expression>

</mult>

</expression>

</sum>

</expression>

<expression>

<pythagoras_difference3><point>B</point><point>O_1</point><point>B</point></pythagoras_difference3>

</expression>

</equality>

<explanation>Lemma 32 (point $O_1$ eliminated)</explanation>

<semantics><value>2189.795918</value><value>2189.795918</value></semantics>

</proof_step>

Fig. 12. A fragment of a proof generated by GCLCprover (one proof step)



Fig. 13. A fragment of a proof generated by GCLCprover

<!--******** Definitions **************-->

<!ELEMENT definitions (definition)*>
<!ELEMENT definition (#PCDATA)>

<!--******** Proof **************-->
<!ELEMENT proof (proof_step|lemma)*>

<!ELEMENT proof_step (equality,explanation,semantics)>

<!ELEMENT lemma (proof,status)>

<!ATTLIST lemma level CDATA #REQUIRED>

<!ELEMENT equality (expression,expression)>
<!ELEMENT inequality (expression,expression)>

<!ELEMENT expression (number|constant|sum|mult|fraction|segment_ratio|signed_area3|
signed_area4|pythagoras_difference3|pythagoras_difference4)>

Fig. 14. A fragment of the dtd for proofs of properties of geometrical constructions



2. C. C. Chou, OU X. S. Gao, and J. Z. Zhang. Automated production of traditional
proofs for constructive geometry theorems. In Eighth Annual IEEE Symposium on

Logic in Computer Science, 1993.
3. Shang-Ching Chou, Xiao-Shan Gao, and Jing-Zhong Zhang. Automated genera-

tion of readable proofs with geometric invariants, I. multiple and shortest proof
generation. Journal of Automated Reasoning, 17:325–347, 1996.

4. DIMACS. Satisfiability suggested format.
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/doc/satformat.tex.

5. Holger H. Hoos and Thomas Stützle. Satlib: An online resource for research on
sat. In Proceedings of SAT 2000. IOS Press, 2000. SATLIB is available online at
www.satlib.org.

6. Predrag Janičić GCLC – A Tool for Constructive Euclidean Geometry and More
than That. In Nobuki Takayama, Andres Iglesias, and Jaime Gutierrez, editors,
Proceedings of International Congress of Mathematical Software (ICMS 2006)
LNAI 4151. Springer-Verlag, 2006.

7. Predrag Janičić and Pedro Quaresma. System description: Gclcprover + geothms.
In Ulrich Furbach and Natarajan Shankar, editors, IJCAR 2006, LNAI 4130, pp
145-150. Springer-Verlag, Heidelberg, 2006.

8. Julien Narboux. A decision procedure for geometry in coq. In Proceedings TPHOLS

2004, volume 3223 of Lecture Notes in Computer Science. Springer, 2004.
9. Christian Obrecht. Eukleides. http://www.eukleides.org/.

10. Pedro Quaresma and Predrag Janičić. Framework for constructive geometry (based
on the area method). Technical Report 2006/001, Centre for Informatics and
Systems of the University of Coimbra, 2006.

11. Pedro Quaresma and Ana Pereira. Visualização de construções geométricas. Gazeta

de Matemática. 151, July 2006. SPM, Lisboa, Portugal.
12. Silvio Ranise and Cesare Tinelli. The SMT-LIB Format: An Initial Proposal. 2003.

on-line at: http://goedel.cs.uiowa.edu/smt-lib/.
13. Geoff Sutcliffe. The tptp problem library.

http://www.cs.miami.edu/
˜

tptp/TPTP/TR/TPTPTR.shtml.
14. Zheng Ye et.al. Geometry Expert . http://woody.cs.wichita.edu/gex/ 2004.


